Scott Augé
President

Amduus Information Works, Inc.

Dear Reader,

sauge@amduus.com
http:/www.amduus.com

Thanks for picking up this book and giving it a look over! Although it is older, using an older style of
coding, I am sure you will still find many of the ideas useful in your applications.

Object Oriented Programming (OOP) makes writing code much more cleaner and simplier. Often in
procedural code one has to make a bunch of if statements for certain conditions — something
inheritance can ease. Also, it allows routines to something to be more easily packaged up in an object
than a group procedures. These are only a few of the benefits!

Of course, I would like to point out areas that Amduus can help your company/organization:

Industries
* Manufacturing Digital Marketing State and Federal
(MRP/MRP II/ERP) Real Estate Government
* Medical Insurance SaaS Applications Property Management
* Services
Business Analysis

* Software Requirements
Analysis
* Functional Specifications

Project Management
Technical Specifications

Digital Marketing

Requests For Proposals

* Brochure Web Site

* Service Requests (Work
Orders)

* Screencasts (Videos)

* Product Returns

Product Registration
Blogging

Survey Software
Configuration &
Quotations

E-Commerce
Video Brochure
Coupon Generation
Social Networking

Sincerely,

Scott Auge
President
Amduus Information Works, Inc.

mailto:sauge@amduus.com
http://www.amduus.com/

Technologies Used By

Amduus Information Works, Inc.
<HTML> Prngress.J OpenEdge.

Languages

Programming languages are key to
developing software. We develop in

Lc;_{g\;‘-?‘{’ =

%_r,&“:‘[\’t S 0‘\&\6 q
5%@+ languages at the system level, database
T level, web site level, as well the

\ SOL application level.

*NIX Shell Scripting

Hp-ag(

Operating Systems f\'}

No matter the application — the most

fundamental layer is the operating MS
system. Amduus supports many types Windows
of operating systems from PC to large
computers. R
soLaris
Apple OS X
PostgreSQL

m Databases

MySsoL:

PROGRESS

SOFTWARE

Earn

Logos trademarks of their respective organizations.

Discussions Of
Object Oriented Programming

In Progress OpenEdge 10.1x

By
Scott Auge

Discussions Of Object Oriented Programming In Progress OpenEdge 10.1x

Copyright © 2008 by Scott Augé
All rights reserved.

Printed in the United States of America.
Published By:
Amduus Information Works, Inc.

1818 Briarwood, Flint, MI 48507

Printing History:
November 2008: First Edition

OpenEdge is a trademark of Progress Software Corporation.

While every precaution was taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

INTRODUCTION

This book is meant for readers who are familiar with the Progress ABL (aka Progress
4GL) programming language. If you are also familiar with object oriented
programming — all the better. You do not need to be familiar with OOP to make use of
the book.

Progress has a book that comes with their software development product called
“Getting Started With Object Oriented Programming.” This is a very good book for
getting into the nitty-gritty of the object oriented abilities of the language. This book
does not do so — it is not an attempt at rewriting something already available (and free
for download on their PSDN site!)

What I am trying to do is provide an example oriented book to learning and using the
object oriented aspects of the language. One can read the above reference and get a
lot of theory on how classes work — but sometimes it's just nice to see some examples
and to understand the thinking behind those examples.

Another point I hope to make in this book are ideas on how to go about designing
objects. Once you get the paradigm in your head, it is pretty clear (usually) how to go
about identifying and naming the methods and properties your object should have.
Another thing is how broad does one make an object — should it be reusable? Should
it directly update the database every time a method is invoked? Should it store up
changes and then commit? These are questions I hope to answer.

To start with we will work with the old stand by data structures such as queues, stacks,
vectors, trees, etc. By looking at these commonly known computer science concepts
with the new language syntax and abilities, one should be able to pick up quickly what
can be done.

Next we start looking at using OO programming as sets of tools to accomplish things.

After that, we look at OO and how it works with the database. We'll start with a class
that makes dynamic queries almost as easy to use as a FOR EACH statement.
Following we will look at two techniques of performing write' operations on the
database.

Finally, we start looking at some ideas on how to “think” in an object oriented manner

1 Add, Delete, and Update are considered write operations.

Page 5

at a more conceptual level. We'll look at the paradigm shift in thinking as well look at
some topics like when to inherit from a class or to instance an object.

This book was written with Progress version 10.1c in mind. You can get by with
version 10.1a for most of the routines contained in the book with a little bit of
tweaking. You will need a minimum of 10.1a to use any of the code and ideas in this
book. Object oriented programming constructs are not available in version 10.0 or
earlier versions of Progress.

Many if not all of the objects in this text can be used in GUI?°, CHUI’, or WWW*
interfaces to your application.

If you wish the source code, please contact Scott Auge at sauge(@amduus.com or
scottauge@gmail.com.

2 Graphical User Interface, aka Windows.

Character User Interface, aka Windows, UNIX terminal connections, bar code readers, etc.

4 World Wide Web interface, aka any thing that uses a browser or web service to interact with your
application.

W

Page 6

Table of Contents

INETOAUCTION. ...ttt ettt ettt ettt e et et e be e s e e ssseensaeenseesnseennns 5
Why Program In An Object Oriented Manner?............cccecvevvevieienenienienieeeeiee e 9
Examples In The Fundamental Data Structures............cccoecvevieneeienieneeieneneeeeieeeeneen 14
STACK 1.ttt sttt ettt ettt ettt e s e et et e ene et e nseeneensenseens 15
QUEUEL. ...ttt ettt e et e e e ta e e e e aaeeeeetaeeeetaeeeeaseeeeesseeessseeeesseaeeeeseeaanes 20
VOO ...ttt ettt ettt e b e ettt e bt et e et et e e eabaeeennee 24
HASN. ...ttt et neas 30
Double LINKEd LAST.....cc.ceieiieiieieieeieieieecete ettt 34
Using Inheritance To Make A QUEUE..........c.cccueeierierieeieceeceece et 42
Using A Class For A Collection Of Useful Functions...........ccccceevevieeieenieeeniieeeieees 45
File Naming Tools (A SINGIETON)......c.c.cccuirieeieriiiieciecieeeeee et 46
URL PaISET.....ueiiiiiiiiiniececteete ettt ettt st e 48
LOGZING TOOIS.....uiiiieiieieeeee ettt et et sae e e nnaeeenes 52
Code Generating ODBJECL.........cevuiruieierierieeieie ettt ettt e st esare e ens 55
Objects That Are Useful In A Utilitarian Manner............cocooeveeienenenienenenieieeeene 57
XML Parsing — XQUETY......ccuveruierieniieniienieenieesieenieeseeesseesseeseesseesseeessseeessseesnsseesnsses 58
SOCKEE ODJECL....cutieiieeieeiecteee ettt ettt et e sbe e teesseesbeeseebeesaensseeens 68
HTTP ODBJECL.....cueiieieeieeteeteee ettt sttt et sa b 75
SOME TP TOOIS....ccueeeieeieeieeie ettt sttt st e e e s beeeenaaeeeas 78
Serialization — SavING an ODJECL........ccuiiviieiiieieeieeieee et 80
Objects That Interact With The Database............ccccevuirierienienieieiiceeieecee e 85
Dynamic QUETY ODJECL.......ccueviiriieieiieiieieie ettt ettt st stesse e sseesneeneees 86
[terating Collection ODJECL........c.covieievieriieieierieetee et e 105
Writing and Deleting From The Database............cccccoeveieriinieiienienicieieeeeeeiee 112
Interacting With The Database With Your Own Commit............ccccecvverveenuieennnnnne. 116
More Advanced SUDJECES......cc.eeveriiriieieiereeee ettt ens 128
The Concept 0f @ FACLOTY......cccviiiieiieiicieceeeee et 129
Dynamic Creation Of Objects With Dynamic-New............cccccevvevieeiuiieeiireecieens 133
Flipping Object's Class Types With Dynamic-Cast...........cccceeeueevuieviievieesieeesieens 136
Error Handling.........c.cooviiiiiiieececeee ettt 138
Object Design PrinCIPIES.......cccvieiieieeieeieeieeieetesee sttt raeeesrae e e 141

The philosophical difference............cceecvieiieiiieiieiiceeeee e 142

Objects Lend To Better Code Organization..............cceeeveeeveeeieenieesieenieesveeeeveee e 142
Class Naming CONVENTIONS.cc.eerveerreerreereesreesteesseesseesseesseesseesseesseessesesssssessssesanns 145
Method Naming CONVENTIONS..........ecueeeveerieerieerieesieesieesteesreesseesseeseeesseeessseesssseeans 146
When to inherit and when to instance within an object.............cccccovevvevieieennennns 147
Adding constants for use with an ObjJect............cccvevuieiieiieriieiieeeeeee e 149
Adding enumerations for use with an object..........cccevvrvieciiiiieiiiecciee e, 150
Should I make my app purely object oriented?...........ccoceveriiereeniiinieiierieeeee 151
Business Object Representations..............eceveeierienieienienieieieseceesee et 152
Why BUSINeESS ODJECTS?......eciieiieiieieeieeieeie ettt eee e s e seeesseeenaaeennseeenes 153
No need to have knowledge of the database structure............cccoevveveervennnnnnee. 153

No need to have knowledge about “magic values” and database quirks.......... 153

No need to have knowledge about sub-objects..........cccevverienienienienieeiieeee 153

Ease of adding additional properties...........ccceecveeveeierienienieniesieeiee e 154

Ease of adding additional methods...........cccoeveeieviiiieiieneiieeeeeeeeee e 154

Most importantly — focus on the purpose, not the implementation!.................. 154
Appendix: Tips ANd TIICKS......couiiieieiiiieieeceeee et s ens 158
Appendix — Ident for source code identification............ccceeveviereecienieeniieeiieeieeeens 159
Appendix: Class Generator With COmMMIL...........ccccvevirieiieninieiienieieiere e 162
Appendix — Revised dyn_findinschema.p Program.............cccceeveriniiiniiniinniiee, 170
Appendix — Scratch Table Data Dictionary LiSting...........cccocceeeevierieeienienieieieeeeenns 172
Appendix: Discussion Table Data Dictionary LiSting...........ccccecvevierieveneesieenieennenns 175
Appendix: SysParameter Table Data Dictionary LiSting...........cccceceveecienienieiieniennenns 178
Appendix: Other Useful Toolkits & Information.............cceceevieecieeciieciieieeieeieeeen. 180
PDF INCIUAE. ...ttt 180
e TaAMEWOTK.OTE. .. .o 180
OF HIVE...eiiiieeee ettt sttt ettt e ae e e eenee 180
0S¢0) 1 4 OSSR 180
Pro@ress TalK......ocviiieeieciecieeeeseee ettt et eenae s 180
Progress PSDINL.......oi ettt et e e e 181
ADOUL The AULNOT......oouiiiii e s 182

Page 8

WhaY ProGrRAM IN AN OBJECT ORIENTED MANNER?

Once you get the taste for OOP you will discover an entirely
new way of analyzing and designing software solutions.

Before we start exploring objects, I want to give you ideas to roll around in your head
as you read about them. These following paragraphs are both arguments for and a bit
of explanation of the benefits of object oriented programming in the ABL.

The world full of many minds and thoughts has pretty much accepted and determined
that OOP for highly abstract programming (that is code not “close to the metal”) is the
way to go. Even FORTRAN has gone object oriented.

Progress using companies are already asking for the skill. I personally know people
who have been passed over on progress jobs interviews because they didn't have OOP
experience. Progress versions V6, V7, and V8 are long gone and V9 is on it's way out
the door soon. It's in your own interest to keep your skills up to par.

Code re-use is simplified. Take for example an object that implements a stack. By
inheriting that object into another object — perhaps an error minder — the stack object
immediately becomes part of the error minder with the error minder “adding value” to
the stack object with error code translation etc.

Code re-use can be instantiated in parallel. Once again, take the idea of a stack. If
one stack is needed — fine for procedural coding. But if n > 1 stacks are needed in an
algorithm, then one needs to do n > 1 times the amount of coding. Often this coding
becomes awkward with pre-processor definitions and include files.

With OOP, code re-use is simplified by simply creating an instance of the same object
as many times as needed.

Page 9

/* Dynamic number of stacks example */

Define temp-table ListOfStacks
field StackObject as class Progress.Lang.Object.

do I =1 to 10:
create ListOfStacks.
ListOfStacks.StackObject = new Stack().
end.

OOP provides a convenient mechanism to collect like functionality together with the
ability to address each piece of functionality as needed. One doesn't look for pop.p,
push.p, countof.p — one looks for stack.cls and finds those pieces of functionality in
there with a simple address of instanceName:functionName() in the source code.

Stack:Push (“One”) .
Stack:Push (“"Two”) .
put “Stack height: “ Stack:CountOf ().

OOP makes it easier of creating abstraction layers. Not only does it allow you to
implement modularization — the modularization is modular! OOP provides a different
mindset on how to conceptualize and implement functionality. Developers see an
object called Authorization and with that object they can do certain things to the
Authorization and learn certain things from the Authorization.

One of the benefits of OOP is the ease of creating data encapsulation. No need to
learn about multiple tables. No need to learn about “magic numbers” or “magic
codes.” No need to know that if one does this in table A one has to do that in table B —
the class and it's methods takes care of it. (Of course, the person providing the class
will still need the knowledge of the data base — but often the person using the class
does not.)

OOP increases programmer functionality — learn the existence of one class and it's
methods or learn of multiple fields, tables, procedure files, and their (sometimes
funky) needs. The learning curve is smaller and developers get productive earlier.

Page 10

Properly defined objects can read almost like a programming language on a
certain business concept.

/* Lets find our authorization. This is at an abstract */
/* level - we aren't worried about what table to look in */
/* or any of it's sister tables. */

Authorization:FindByNumberOrg (“A1111111”, “GHHS”).

if not Authorization:IsAvailable () then

/* We don't even need to check if this exists - the */
/* methods are smart enough to know if it is worth */
/* the effort or not. */

Authorization:CancelAirlineReservation() .
Authorization:CancelRentalCar () .

/* Lets add an expense to the Authorization */
Expense = new Expense().

Expense:SetType (...).

Expense:SetCost (...).

Expense:SetDate (...).

/* Validations on Sets detail errors with them */
/* 1f they exist - pop them off to the user. */

if Expense:HasError () then
do while Expense:HasError () :
{&0UT} Expense:GetError () skip.
end.
/* Associate the expense with an authorization */
Authorization:AddExpense (Expense) .

/* Has it been signed? */

if Authorization:HasStamp (“SIGNED”) then
Authorization:DoStamp (“APPROVED”) .

Objects are more flexible. Parameters to procedures might need to be changed — with
objects one simply adds a new property or method without damaging existing code:

/* old way - very kludgy - change mail.p and change */

Page 11

/* through out the code base! Else - one more */
/* wrapper out there to update in maintenance! That */
/* costs money! */

run mail.p (To, Subject, MessageBody) .

/* New way with objects! uh - oh - now they want */
/* BCC! Simply add call SetBCC where needed on a */
/* class and ignore when not. */

Mailer:SetTo(...).

Mailer:SetBCC(...).

Mailer:Subject(...).

Mailer:Body (...) .

Mailer:SendByMail (). /* use /usr/bin/mail */

/* Uh oh! This one doesn't need BCC, but could use */
/* attachment and a different underlying transport */
/* mechanism. */

Mailer:SetTo(...).

Mailer:Subject(...).

Mailer:Body (...) .

Mailer:AddAttachment (...).
Mailer:SendBySMTP (). /* use SMTP over socket */

/* Just send it with what ever the default transport is */

Mailer:SetTo(...).
Mailer:Subject(...).
Mailer:Body (...).
Mailer:Send() .

Method overloading® allows more flexible arguments to the same method in an object.
Yes, you can actually use the same name for a method that takes different arguments.
No more PushInt (), PushChar (), etc. - simply make the concept of Push ()
work with any data you need to.

Stack:Push (“One”). /* Push(char) */
Stack:Push(2) . /* Push(int) */
put “Stack height: “ Stack:CountOf ().

5 Version 10.1c¢ or better required.

Page 12

LEARN MORE at
http://www.psdn.com/library/entry.jspa?externallD=4761&categorylD=1917

Page 13

ExampLES IN THE FUNDAMENTAL DATA STRUCTURES

When learning computer science, one of the fundamentals
learned is the concept of a data structure. A data structure is
a collection of data and a collection of operations that are
performed on that data. Sounds a lot like an object doesn't it?
So lets look at what we know to learn the new.

Page 14

Stack

One of the most commonly learned data structures (or pattern) is the stack. It allows
one to stack up a list of items. It is also known as a LIFO structure — that is, the (1)ast
(i)tem into the data structure is the (f)irst (o)ut of the structure. We construct two

operations called Pushonstack () and PopOffstack () to place data into and out of
the data structure.

A

| |
n
- Data
| |
H Data Data is removed from list
H in a first in - last out order.
H Data
|)
: W.
am

) Data tEEEa,,

. (]

L L]

“ : Data

‘u.a’
Stack

In addition to operations to push the value into the data structure and popping a value
out of the data structure, it would be useful to have some informational operations to

answer questions like “How many items are in the structure?”” or “Is there anything in
the structure?” We call these Countof () and IsEmpty () respectively.

Another utility operation on the data structure is the ability to clear the stack without

having to loop through a series of calls to Popoffstack(). We call this operation
ClearStack().

When looking at the data structure in terms of a class, we call the operations
“methods.”

So here are some categories of methods you might want to consider when designing
your class in terms of functional collections:

e Core. Those methods that are fundamental to the functionality of the class.
Examples of this is adding or deleting database records, making decisions, or

Page 15

validating information.

e Informational. Those methods that provide some information to the
implementing program about what is going on in the object. Examples of
these methods are error status and other information pertinent to the running of
the object.

e Utilitarian. Those methods that are useful in the maintenance of information
in the class. Often these are the result of modularization and functional
decomposition of the above methods and private® to the objects.

Since we have talked about the operational elements of a data structure, now lets talk
about the data portion of the data structure. In the code below, we have two main
pieces of data — one is a set which we realize with a temp-table. The other is a simple
lone value we realize with a variable to help order data coming in and out of the
object. Another variable is used to hold the source code revision information — this
can be useful to implementors (programmers using the object) or for the ident’
command to see what revision a piece of r-code really is.

There are various amounts of visibility to these variables from code using this class.
The temp table, named TheStack, is private. This means only methods within the
class can see the data. The variable, Revision, is public. This means that the calling
program can access this data. More on that later.

With Thestack, we can see making use of a fundamental feature of the ABL within
the class — a simple temp-table. One is going to be presented with plenty of
opportunities to use what you know to do object oriented programming in the ABL.
Our temp table is composed of two pieces of data — the data we want to push and pop
off the stack called pata, and another that will keep track of what was added when
called orderNo.

One of the simple uses for this is a collection of errors that a program may encounter
while doing a batch load or a set of validations from a user interface (aka a web page
or web service.) A more complicated use might be parsing a string into components.
(A stack can indeed be a component within a more complicated data structure such as
an arithmetic parser!)

6 More on what “private” means later.
7 A java based ident command is provided for those who do not have a revision control system
installed that can use commonly used keywords.

Page 16

Here is the code for a simple character based stack.

/***/

/* Class to conveniently store errors or stacked data */
/***/

class Stack:

define private temp-table TheStack
field Data as character
field OrderNo as integer
index PUKey is unique primary OrderNo ascending.

define public variable Revision as character

init "S$Revision$"

no-undo.
/**/

/* Place an item onto the stack. */
/**/

method public logical PushOnStack (input TheValue as character):
define variable NextOrderNo as integer no-undo.
find last TheStack no-lock no-error.
if available TheStack then
NextOrderNo = TheStack.OrderNo + 1.
else
NextOrderNo = 1.

create TheStack.

TheStack.Data = TheValue.
TheStack.OrderNo = NextOrderNo.

return true.
end. /* method */

/**/
/* Remove an item from the stack. */

/**/

method public character PopOffStack ():

Page 17

define variable TheValue as character no-undo.
find last TheStack exclusive-lock no-error.

if not available TheStack then return 2.
TheValue = TheStack.Data.

delete TheStack.

return TheValue.

end. /* method */

/**/

/* Information about the stack. */
/**/

method public logical IsEmpty():
return not can-find (first TheStack).

end. /* method */

/**/

/* Provide a means to clear the stack without popping all of them. */
/**/

method public logical ClearStack():

empty temp-table TheStack.
return true.

end. /* method */

/**/

/* Information about the stack. */
/**/

method public integer CountOf () :
define variable TheCount as integer init 0 no-undo.
for each TheStack no-lock:
TheCount = TheCount + 1.

end.

return TheCount.

Page 18

end. /* method */
end. /* class */
Here is a simple program to use the stack in the Webspeed Script Lab:

define variable S as class Stack no-undo.

S = new Stack().

S:PushOnStack ("A").
S:PushOnStack ("B").
S:PushOnStack ("C").

{&OUT} S:CountOf () "
".
{&0UT} S:IsEmpty() "
".
{&0UT} S:PopOffStack() "
".
{&0UT} S:CountOf () "
".
{&0UT} S:PopOffStack() "
".
{&0UT} S:CountOf () "
".
{&0UT} S:PopOffStack() "
".
{&0UT} S:CountOf () "
".
{&0OUT} S:PopOffStack() "
". /* 2 */
{&OUT} S:CountOf () "
".
{&0UT} S:IsEmpty() "
".

{&0OUT} S:Revision "
".

delete object S.

What about those other types of data that can be put on the stack? One simply needs
to add a new Data field to the temp table — perhaps ITntData and a new method
called PushOnStack () and PopOffStack () using arguments of that type.

This is called overloading a method — making the same name work with different
types of data. The compiler knows which methods to call because of the name
methods and the signature® of the arguments being accepted.

8 Signature is the type and order of the types of arguments being sent. This is available only
beginning with 10.1c. Previous versions will not compile this kind of code.

Page 19

Queue

A queue is somewhat opposite of a stack, instead of the first item being the last item

out — the first item is the first item out. Think of it as a bank line — the teller can only
process so many requests so customers stand in line until it is there turn.

A

| |
. Data
n
: s
. "‘
n
H
. Data Data is removed from list
H in the same order as it was
[Data . .
. entered into the list.
0
) Data

L)

5 N

L)

. &

* &

"--’.

Queue

Old school thought might be — well, I can do the same thing with a temp-table and a

find first! And you would be right. Until you needed two of them. Or three of them.
And should you need it again you would be coding again.

This is one of the reasons why I chose a queue to illustrate with. It is deceptively easy
to make a queue in Progress ABL with a few statements. But hopefully with this code

you will see that it is easily re-usable in other code and the same code by simply
making an instance of the class.

This means:

e Creating another instance is code re-use. There is no need to customize the

code implementing the data structure to be used over and over (aka extents or
difficult to use include files) — you just use it.

e [tis already tested.

Page 20

e You save time.
e You save money.

Everything you need to deal with is encapsulated — that is — you have one variable to
reference the object by and your data set to work with. So you let the object manage
the data for you. No need to remember special fields or values — all you need to focus
on is the object reference and how you named it.

Before looking at the code, lets list off some things we want to do: 1) Put items on the
queue, 2) take items off the queue, 3) count how many items are on the queue, and 4)
make a dump file of the items on the queue (great for testing or debugging.)

You can see below in the code we are interested in two properties — an iterator which
helps us order the records stored in a temp table called queue (there we are using the
power of the 4GL again!) Following is a constructor it initialize things and the
methods that basically do exactly what we named in our list of things above.

class amduus.misc.queue:
define private variable iter as integer no-undo.

define private temp-table queue

field order as integer

field data as character

index pukey is primary order.
/**/

/* A constructor is run when a class is instantiated into an */

/* object. Any kind of initializations can be done here. */
/**/

constructor public queue() :
iter = 0.
end. /* constructor */

/**/

/* This is a core functionality method - put some data into the */
/* queue. */
/**/

method public void enqueue (input string as character) :

Page 21

create queue.
iter = iter + 1.
queue.order = iter.

queue.data = string.

end. /* enqueue */

/**/

/* This is a core functionality method - remove the data from the */

/* queue and give it to the code using the object. */
/**/

method public character dequeue ():
define variable text out as character no-undo.

find first queue exclusive-lock no-error.
if not available queue then return ?.

text out = queue.data.
delete queue.
return text out.

end. /* dequeue */

/**/

/* This is a utilitarian method to allow the implementation */

/* program “reset” the data structure. */
/**/

method public void empty () :
empty temp-table queue.
iter = 0.

end. /* empty */

/**/

/* This is an informational method to help the implementation code */

/* know how many items this queue holds. */
/**/

method public integer countof():

define variable counter as integer init 0 no-undo.

Page 22

for each queue no-lock:
counter = counter + 1.

end.

return counter.

end. /* countof */

/**/

/* Another informational method that helps answer the question of */
/* if the queue is empty in an easy to comprehend and self- */
/* documenting way for the implementation code. */

/**/

method public logical isempty():
return not can-find (first queue).
end. /* isempty */

/**/

/* This is a utilitarian method - sometimes ya Jjust want to know */
/* what is happening in the structure. This is a way to see by */
/* dumping the data into a file. */

/**/

method public void dumpfile (input filename as character):
output to value (filename).
for each gqueue no-lock:
export queue.
end.
output close.

end. /* dumpfile */

end. /* class */

This is an example use of the queue:

define variable myqueue as class amduus.misc.queue no-undo.
define variable out text as character no-undo.

myqueue = new amduus.misc.queue() .

Page 23

mnyqueue:enqueue ("First").
display mygqueue:countof ().

myqueue :enqueue ("Second").
myqueue:enqueue ("Third").

display mygqueue:countof ().

display myqgqueue:dequeue () .
display myqueue:dequeue () .

display myqueue:countof ().

delete object myqueue.

Vector

Lets look at another fundamental data structure — the vector. The vector is very much
a self regulating array. Think of an extent variable that can extend it's self as needed.

Another construct we use in progress to try and implement vectors is a comma
delimited character string and the use of NUM-ENTRIES () and ENTRY ().

Sometimes a string will run out of room (less of a problem with 1ongchar now) and
the management of the comma's can be tiresome. Often the code is a bit kludgey — but
with a class it all becomes quite easy to implement an expanding set of data.

Page 24

Data) .
Data is accessed by a numerical

Data offset.
Data
Data Unlike an array, a vector can
be dynamically changed in size
Data ‘ for adding new data.
Vector

Since a vector is so close to a string with the operations NUM-ENTRIES (), ENTRY (),
and CAN-DO (), this is an excellent time to think about the different view of the world
OOP has. With the functions, one thinks in a verb-noun manner. I have these
functions (verbs) that I want to operate on this data (noun). OOP is almost the
complete opposite. It is more noun-verb thinking — I have this thing (noun) and I want
it to do something for me (verb).

Lets think of some things that an object can do that perhaps these functions can't — like
sort the list of entries? Perhaps capitalize each of the entries? Make sure entries
added are unique (ie discard later entries of the same data.) Hopefully you are
beginning to see the advantages of creating an object instead of depending on
sequences of ABL being used over and over. Use the object and all the power of that
object becomes available. Use the ABL and one is kind of stuck with what the ABL
provides.

Page 25

A new thing to learn is notice how the class statement has a period delimited sequence
of words before Vector. How this works is you place a file named Vector.clsina
directory /amduus/misc that hangs off the PROPATH. (Of course under UNIX the
lettering is case sensitive but not so in Windows.)

So this string of text is telling the compiler in what directory to find a file named
Vector.cls which contains this source code. The name of the class must match
the name of the file.

Hopefully in the future, as more open source is created by people
using OOABL, the objects can be easily shared. To differentiate one
set of class definition files from another, the prefix can be used. For
example, the class amduus.misc. Vector would be different from
footech.datastructures.Vector. By instantiating with the prefix one
knows exactly which version one would be using.

Here is the code for a vector and some example code implementing it follows:

/* Vector - basically an expanding array */
class amduus.misc.Vector:

define temp-table Vector

field Data as character

field Order as integer
index pukey is primary unique Order ascending.

/**/

/* This is an example of an overloaded method - the same name but */
/* different arguments. */
/‘k****‘k‘k*****‘k‘k‘k*****‘k****‘k‘k*‘k**‘k‘k‘k~k*****‘k‘k***‘k**********************/

/****x* 10.1c allows overloading
method public void SetEntry(input TheData as character):

define variable LastOrder as integer no-undo.
find last Vector no-lock.
LastOrder = if available Vector then (Vector.Order + 1) else (1).

create Vector.

Page 26

Vector.Data = TheData.
Vector.Order = LastOrder.

end. /* method */

*****/

/**/

/* The method version of adding an entry into the vector. 1In a */
/* static non-expanding extent, it would read like: */
/* Vector [TheIndex] = TheData. */
/* A vector data structure automatically expands as needed. */

/**/

method public void SetEntry
(input ThelIndex as integer,
input TheData as character

) :
FillIn (TheIndex) .
find Vector exclusive-lock
where Vector.Order = Thelndex
no-error.
Vector.Data = TheData.

end. /* method */

/**/

/* A utilitarian method used by the data structure to automatically */
/* create new blank entries if the implementation code expands past */

/* the last existing entry in vector. */
/* Note how it is private so the implementation code cannot call it */
/* directly - only methods in this class can call it. */

/**/

method private void FillIn (input TheIndex as integer) :
define variable CurIndex as integer no-undo.
do CurIndex = 1 to ThelIndex:

/* Might be tempted to simply call SetEntry() but think about the */
/* expense in operations. */

if not can-find (Vector where Vector.Order = Curlndex) then do:

create Vector.
Vector.Order = Curlndex.

Page 27

Vector.Data = ?.
end. /* if */
end. /* do */
end. /* method */
/**/

/* Obtain the data stored at a given index of the vector. */
/**/

method public character GetEntry (input TheIndex as integer) :
find Vector no-lock

where Vector.Order = Thelndex
no-error.

if available Vector then return Vector.Data.
return °?.
end. /* method */

/**/

/* An informational method telling the implementation code how many */
/* items are stored in the vector. */
/**/

method public integer CountOf ():
define variable Count as integer no-undo.
for each Vector no-lock:
Count = Count + 1.
end.
return Count.

end. /* method */

/**/

/* An informational method to tell the implementation code what is */

/* going on inside the data structure. */
/**/

method public logical IsEmpty():

return not can-find (first Vector).

Page 28

end. /* method */

/**/

/* An utilitarian method to help the implementation code control */

/* use of the data structure. */
/‘k******‘k************‘k***/

method public void Reset () :
empty temp-table Vector.

end. /* method */

/**/

/* A utilitarian method to help the implementation programmer if */
/* the code is not doing what they are expecting - a debugging */
/* tool. */

/‘k*k****k*k*k************‘k*****k*k*k******************k*k*k********************/

method public void SaveToFile (input FileName as character) :
output to value (FileName) .
for each Vector no-lock:
export Vector.
end. /* for each */
output close.
end. /* method */

end. /* class */

In this example code (I usually include a set of unit test code in every class file so if
changes are made the tests are readily available) — we type the T variable as a class
with the prefix and then instantiate it with the new operator with the same prefix.
From then on it will be using that code base to manipulate it's data.

/*************************** UNIT TEST ***xkkkkkkhkkhkkkrkhkhrkhkhkhrkhkhxkrk

define variable T as class amduus.misc.Vector no-undo.

T = new amduus.misc.Vector ().

Page 29

T:SetEntry (1, "One").
T:SetEntry (3, "Three").

display T:CountOf ().
display T:IsEmpty() .

display T:GetEntry (1).

delete object T.

***/

Hash

A hash is like a vector, but instead of being limited to an integer index offset to find a
value, one can use a string to find the value. These are also called “associative arrays”
because one value is associated to another value.

Data > Data One set of data is associated
Data P Data To another set of data in a
One to one form. The data can
Data > Data be any type or canonical form.
Data N Data Unlike an array, a vector can
be dynamically changed in size
Data A Data for adding new data.
Hash

We could actually use something called “inheritance” to make a vector out of the
coding for a hash. But I am going to save that for a whopper of an example to show
the flexibility of re-using code.

I have included the code so you can see how it is very similar, yet dissimilar from a
vector.

/* Hash - basically an associative array */
class amduus.misc.Hash:

define temp-table Hash

Page 30

field Data as character
field Hash as character.

/**/

/* This is part of the core functionality of the hash - accept a */

/* combination of values and store them. */
/**/

method public void AddEntry
(input Hash as character,
input TheData as character
) :

find Hash exclusive-lock
where Hash.Hash = Hash
no-error.

if not available Hash then do:

create Hash.
Hash.Hash = Hash.

end. /* if */
Hash.Data = TheData.

end. /* method */

/**/

/* Core functionality - removal of a pair of data in the data */

/* structure. */
/**/

method public void DeleteEntry (input Hash as character):

for each Hash exclusive-lock
where Hash.Hash = Hash:

delete Hash.
end. /* for each */

end. /* method */

/**/

/* Core functionality - given one piece of data, find it's as- */

/* sociated data. */
/**/

Page 31

method public character SearchEntry(input Hash as character) :

find Hash no-lock

where Hash.Hash = Hash

no-error.

if available Hash then return Hash.Data.

return 2.
end. /* method */
/**/

/* An informational method - how many items do we have in here? */
/**/

method public integer CountOf () :
define variable TheCount as integer no-undo.
for each Hash no-lock:
TheCount = TheCount + 1.
end.

return TheCount.

end. /* method */

/**/

/* An informational method - do we have anything in here? We pro- */
/* vide this for self-documenting if statements and other condition */
/* statements. */

/**/

method public logical IsEmpty():
return not can-find (first Hash).

end. /* method */

/**/

/* A utilitarian method that allows the implementation code to re- */

/* set the data structure. */
/**/

method public void Reset ():

empty temp-table Hash.

Page 32

end. /* method */

/**/

/* A utilitarian method that allows the programmer using the class */

/* to dump data contained within to a file. */
/********************~k***/

method public void SaveToFile (input FileName as character):
output to value (FileName).
for each Hash no-lock:
export Hash.
end. /* for each */
output close.
end. /* method */
end. /* class */
/**k‘k‘k***********‘k******‘k**** UNIT TEST hAhk kA kA hkhAkhkkhkhhrhkhhkhkhkhkhhkhkhkkhkhkrrkhkkhkrkrkxk kx*x
define variable T as class amduus.misc.Hash no-undo.
T = new amduus.misc.Hash() .

T:AddEntry ("Scott", "One").
T:AddEntry ("Craig", "Two").

display T:IsEmpty().

display T:CountOf ().

display T:SearchEntry("Craig").
T:DeleteEntry("Scott").

display T:SearchEntry("Craig").
display T:CountOf ().

delete object T.

***************************k*k*k*k‘k*k***/

Page 33

Double Linked List

A double linked list is something even more sophisticated. With it you have the usual
ordering fields but they go in both directions to previously existing data. What this
means is that you can keep an ordered list of data, but easily insert new data in
between existing data — not simply at the beginning or end of the list.

New Data Inserting data any where in
the list can be achieved by
putting a link from the prev
and next data to 1it.

Data Data P Data

Double Linked List

In addition, you will have some iterating methods to move around in the list. Most
interesting is the possibility of two types of insert methods (before and after current
piece of data.) One has a deletion method that is more complex than most in that it has
to tie together multiple pieces of data together while deleting another.

Like the other classes we have discussed, the data portion is kept in a Progress ABL
temp-table. Having these different operations on the table kept in a class makes a
more robust and fully tested piece of code than trying to do the same over and over in
a more procedural environment.

A double linked list is one of the more complicated data structures to code. Hopefully
you will notice that many of the methods are composed of literally one statement or a
few at most... and then there are those a little larger. The point being though, a very
complicated data structure can be created of operations composed of minuscule 4GL
code.

As with most classes, you can use different data types than the simple string stored
here.

Here is the listing with some example calls in the end.

Page 34

class DualLinkList:

define private temp-table TheData
field Data as character
field NodeNumber as integer
field PrevNodeNumber as integer
field NextNodeNumber as integer.

define private buffer CurrentTheData for TheData.

/***/

/* Core functionality - provide a means to read a piece of data in the */
/* list. * /

/***/

method public character GetValue() :
return CurrentTheData.Data.

end.

/***/

/* Informational method - is the list empty? */
/***/

method public logical IsEmpty():
return not can-find (first TheData).

end. /* method */

/***/

/* Informational method - does the list already include a value? */
/***/

method public logical DoesContain (input Data as character):

for each TheData no-lock
where TheData.Data = Data:

return true.
end. /* for each */
return false.

end. /* method */

/***/

Page 35

/* Core functionality - provide a means to remove a piece of data from */
/* the list. */

/**k*k**k‘k*k**********************/

method public logical DeleteCurrent():

define buffer PrevTheData for TheData.
define buffer NextTheData for TheData.

if not available CurrentTheData then return false.
find current CurrentTheData exclusive-lock.
/* 1f there is a previous node bring it up for linking */

if CurrentTheData.PrevNodeNumber <> ? then
find PrevTheData exclusive-lock
where PrevTheData.NodeNumber = CurrentTheData.PrevNodeNumber
no-error.

/* 1f there is a next node bring it up for linking */

if CurrentTheData.NextNodeNumber <> ? then
find NextTheData exclusive-lock
where NextTheData.NodeNumber = CurrentTheData.NextNodeNumber
no—-error.

/* Link the next data node to the previous node */

if available NextTheData then
if available PrevTheData then
NextTheData.PrevNodeNumber = PrevTheData.NodeNumber.
else
NextTheData.PrevNodeNumber = 2.

/* Link the prev data node to the next node */
if available PrevTheData then
if available NextTheData then
PrevTheData.NextNodeNumber = NextTheData.NodeNumber.
else

PrevTheData.NextNodeNumber = 2.

/* Blow away TheCurrent Data and set to prev or next - whom ever is */
/* available first. */

delete CurrentTheData.

return true.

Page 36

end. /* method */

/***/

/* Informational method - are we currently positioned at the front of */
/* the list? */

/***/

method public logical IsFront():
if not available CurrentTheData then return true.
return (CurrentTheData.PrevNodeNumber = ?).

end.

/***/

/* Informational method - are we currently positioned at the end of */
/* the list? */

/***/

method public logical IsEnd() :
if not available CurrentTheData then return true.
return (CurrentTheData.NextNodeNumber = ?).

end.

/***/

/* Core functionality - provide the means to add an entry to the list. */
/***/

method public logical InsertAfter (input NewData as character):

define buffer NextTheData for TheData.
define buffer NewTheData for TheData.

create NewTheData.

NewTheData.Data = NewData.

NewTheData.NodeNumber = etime + random(l, 1000000).
NewTheData.NextNodeNumber = 2.
NewTheData.PrevNodeNumber = 2.

if available CurrentTheData then
find NextTheData no-lock
where NextTheData.NodeNumber = CurrentTheData.NextNodeNumber
no—-error.

Page 37

if available CurrentTheData then do:
NewTheData.PrevNodeNumber = CurrentTheData.NodeNumber.
CurrentTheData.NextNodeNumber = NewTheData.NodeNumber.

end.

if available NextTheData then do:
NextTheData.PrevNodeNumber = NewTheData.NodeNumber.
NewTheData.NextNodeNumber = NextTheData.NodeNumber.

end.

find CurrentTheData where
CurrentTheData.NodeNumber = NewTheData.NodeNumber.

end.

/***/

/* Core functionality - provide a means to add data to the list. */
/***/

method public logical InsertBefore (input NewData as character):
/* An exercise for the reader! */

end. /* method */

/***/

/* Allow the implementation code to jump to a certain offset in the */

/* list. From there data reading, insertion, or deleting can be done. */
/***/

method public logical MoveToEntryN (input N as integer):
define variable Counter as integer no-undo.
if N < 1 then return false.

if not MoveFront () then return false.
Counter = 1.

do while true:

if Counter = N then return true.
if not MoveNext () then return false.

Counter = Counter + 1.
end. /* do */

end. /* method */

Page 38

/***/

/* Core functionality - move from the current piece of data to the

/* next one for data reading, insertion, deletion or more navigating.

*/
*/

/***/

method public logical MoveNext () :

/* Need this intermediate variable because the phrase

/* where CurrentTheData.NodeNumber = CurrentTheData.NextNodeNumber */

/* does not work.

define variable NodeNumber as integer no-undo.

if not available CurrentTheData then return false.

if CurrentTheData.NextNodeNumber = ? then return false.
NodeNumber = CurrentTheData.NextNodeNumber.

find CurrentTheData no-lock

where CurrentTheData.NodeNumber = NodeNumber

no-error.

return true.

end. /* method */

/***/

/* Core functionality - move one step over to a previous data item.

*/

/***/

method public logical MovePrev():

/* Need this intermediate variable because the phrase

/* where CurrentTheData.NodeNumber = CurrentTheData.PrevNodeNumber */

/* does not work.

define variable NodeNumber as integer no-undo.

if not available CurrentTheData then return false.

if CurrentTheData.PrevNodeNumber = ? then return false.
NodeNumber = CurrentTheData.PrevNodeNumber.

find CurrentTheData no-lock

where CurrentTheData.NodeNumber = NodeNumber
no-error.

Page 39

return true.
end. /* method */
/***/

/* Core functionality - jump to the front of the list. */

/***/
method public logical MoveFront () :

for first CurrentTheData no-lock
where CurrentTheData.PrevNodeNumber = ?:

return true.
end. /* for first */
return false.
end. /* method */
/***/

/* Core functionality - Jump to the end of the list! */

/***/
method public logical MoveEnd() :

for first CurrentTheData no-lock
where CurrentTheData.NextNodeNumber = ?:

return true.
end. /* for first */
return false.
end. /* method */

/****k**k*k‘k***k‘k*k*k*k***‘k*****k**k*k*k***k‘k*k‘k‘k************k*k*****‘k****‘k************/

/* A utilitarian method that helps with debugging or understanding */
/* what is going on in the list. */
/***/

method public void DumpDataToFile (input FileName as character):
output to value (FileName) .

for each TheData:

Page 40

export TheData.
end.

output close.
end. /* method */

end. /* class */

Here is some example use of the data structure. Hopefully you can see the ease of
implementation and clarity of code that OOP provides for this very complex
processing.

/**************************** UNIT TEST CODE *** %%k %k kkkkkkkkkkkkkxkrkkxkx

PROPATH=PROPATH + ":/export/home/sauge/code".
define variable t as class DuallLinkList no-undo.
t = new DuallLinkList ().

t:InsertAfter ("One,").
{&OUT} t:GetValuel().

t:InsertAfter ("Two,").
{&0OUT} t:GetValue() .

t:InsertAfter ("Three,").
{&0OUT} t:GetValue() .

t:MoveFront () .

t:InsertAfter ("One.Two,") .
{&0OUT} t:GetValue() .

t:MoveEnd () .
t:InsertAfter ("Four").

t:DumpDataToFile ("/tmp/t").
{souT} "|".
t:MoveFront () .

do while true:
{&0UT} t:GetValue() .

Page 41

if t:IsEnd() then leave.
if not t:MoveNext () then leave.
end.

{&OUT} "|".

if t:MoveToEntryN(2) then
{&0OUT} t:GetValue ()

else

{&0OUT} "Out Bounds".

{&ouT} "|".

if t:MoveToEntryN(7) then
{&OUT} t:GetValuel().

else

{&OUT} "Out Bounds".
{&ouT} "|".

t:MoveToEntryN (2) .
t:DeleteCurrent () .

t:DumpDataToFile ("/tmp/tl"™).

delete object t.

***/

Using Inheritance To Make A Queue

This is where object oriented programming gets interesting. We are going to use
inheritance — basically code reuse — to create a new class.

You are familiar with a Queue from a previous section — well, we can actually create a
queue by re-using the code from the above dual linked list. In fact, we can use the
code above to create a stack too!

Inheritance basically tells the compiler for a given class definition — also make the
code automatically available to this other class. Note in the class statement line, we
use the keyword inherits and name the class.

From that point on, we can use all the public and protected methods found in
the DualLinkList class in our new Queuel class as if they were already defined!

Page 42

That brings code re-use far past cut-n-paste or calling a procedure.

Also I think you will notice, that through code re-use — we focus only on the code
needed to implement the queue in the class definition file. Through code re-use we
have defined a queue with far less code than the previous one at the beginning of this
section! With OOP an inheritance, we focus more on the differences that we want to
make than trying to re-work the original code into the new code (as often happens in
“code reuse.”).

/* Example queue based on a dual link list */
/* Shows the power of inheritance and code reuse. */

class Queuel inherits DuallLinkList:

/***/

/* Provide a Push method to put data into the queue. */

/***/

method public void Push (input Data as character):
InsertAfter (Data) .

end. /* method */

/***/

/* Provide a pop method to see and remove data from the queue. */
/***/

method public character Pop ():
define variable Data as character no-undo.
if IsEmpty() then return 2.
MoveEnd () .
Data = GetValue() .
DeleteCurrent ().
return Data.

end. /* method */

end. /* class */

/********************** UNIT TEST CODE *****xkkkkkrkkrkhkkrxkhkrkhkxkhkxkhkxk

define variable T as class Queuel no-undo.

Page 43

= new Queuel ().

=)

:Push ("One") .

:Push ("Two") .

:Push ("Three") .
:DumpDataToFile ("/tmp/1") .

M aA

{&OUT} T:IsEmpty() .

{&OUT} T:Pop() .
{&OUT} T:Pop() .
{&OUT} T:Pop() .
{&0UT} T:IsEmpty() .

delete object T.

**/

Page 44

UsinGg A Crass For A CoLLecTtioN OF UseruL FuncTIONs

Classes can be composed of useful methods for commonly
used functionality. They need not be dedicated to a sole data
structure but as a library of useful tools. For example the
manipulating strings or file items. (In fact, file systems
should be considered a data structure! They are trees!)

Here you will find objects that can be simply reused over and
over with different data. The point [am trying to make here,
is that one does not need to create a new instance of an object
for every use.

Page 45

File Naming Tools (A singleton)

Here is a very simple object that combines together operations related to information
about a file path on a windows or UNIX computer. Sometimes you are given a full
path to a file and want to know the prefix, postfix, the simple name of the file, or the
directory the file is found in. This is a nice little object to help parse that out for you.

There is something special about this class though — notice the static keyword.
When you use static methods, variables, and properties one does not have to
instantiate the class into an object. You simply start using the class as is. (See the
Unit Test Code section for this code below.)

For a set of tools like this, a static class implementation (aka a singleton) will work
just fine as it is unlikely you will need multiple copies of this object around.

A gotcha for this is that the code for the static class will remain in memory until the
session is closed. Unlike an instantiated object, you cannot delete it from memory.
Even if you re-compile the cls file, the new file is not recognized until you re-start the
session. The good news is that you will only have one copy in memory at any time.
So if you have plans on putting lots of static classes in memory — this is something to
consider.
class FileTools:
method public static character postfix (input filename as character):
return substring (filename, r-index (filename, ".") + 1).
end.
method public static character basename (input filename as character):
return replace (filename, path(filename), "").
end.
method public static character prefix (input filename as character):

return entry (1, basename(filename), ".").

end.

Page 46

method public static character path (input filename as character):

return substring (filename, 1, r-index(filename, dirdelimiter())).

end.

method public static character dirdelimiter():

if opsys = "UNIX" then return "/".
else return "~\".
end.

end.

/*********************** UNIT TEST CODE *** %%k kkkkkhkkkxkhkhkkhkxkhkkhkxkxkk

define variable FileName as character no-undo.

FileName = "\tmp\this.txt".

display FileTools:
display FileTools:
:Prefix (FileName) .

display FileTools

display FileTools:

PostFix (FileName) .
BaseName (FileName) .

Path (FileName) .

**/

This is a pretty straight forward class — maybe you can extend it to include methods to
replace the postfix, rename the base name, change the directory? By adding methods
using the FILE-INFO handle you can extend it with information about a real file out

on the file system. Perhaps you can even add methods to provide directory listings!

A way of thinking about object oriented programming is “embrace and
extend.” Embrace a bit of code and then using the new syntax and paradigm

to extend that code into new functionality.

Page 47

URL Parser

Sometimes you find yourself needing to make socket communications (a bit on that
later) when given a URL. It is becoming more and more common to identify sources
of information with a URI beginning with http:, https:, file:, etc. However, the
progress tools for socket communication require the pieces to be separate arguments to
various items in the socket handle.

Something new to our objects so far is the inclusion of some of some error handling
methods. While they are part of the object in this example, you will probably want to
make an error class and inherit all new objects from there.

As you look over the error handling methods, you will notice not all of them use the
public keyword. One of them uses the private keyword. Lets discuss what these
things are doing.

When one marks a method (or variable) as public — it means that any code with
visibility to the instance of that object can use that method.

When one marks a method (or variable) as private — it means only the routines
making up the class can use those routines. In the example below — we want only the
class to be setting the error condition. The programming using the object has no
business working the objects error setting routines and we enforce that by
encapsulating it in the class.

There is another keyword not used below but I will discuss it anyways. When one
marks a method (or variable) as protected — it means only those classes inheriting
that class can use the method or variable’. So it is the in-between spot of public and
private.

When creating classes, I have found that unless the property
is specifically private, it is worth while to make it protected.
When you “embrace and extend” the class into a sub-class
you will often find yourself going back and making
properties protected so they can be used by the sub-class.

9 Or temp-table. Often I have found temp-tables used in a class will need to be marked protected as
they are important to the workings of any classes inheriting the class containing the temp-table.

Page 48

This form of error handling is different from the error handling Progress provides. It
is oriented to errors that your application will throw when it needs to.

This is a class that we will be making use of in a future class to show you how to
instance and delete one object within another.

class amduus.web.urlparse:

define public variable Host as character no-undo.
define public variable Port as character no-undo.
define public variable URI as character no-undo.

define public variable Protocol as character no-undo.
define public variable ErrMessage as character no-undo.

/***/

/* Performs an attempt at parsing URL to it's component parts. Returns*/

/* false if it cannot do it. */
/**************************************k*k*k‘k******************************/

method public logical Parse (input ParseThis as character):
ResetError() .
if not IsValidURL (ParseThis) then do:

SetError ("001").
return false.

end.
Protocol = entry (1, ParseThis, ":").
ParseThis = replace (ParseThis, Protocol + "://"™, "").

Host = entry (1, ParseThis, "/").
URI = replace (ParseThis, Host, "").

if index (Host, ":") > 0 then do:

Port entry (2, Host, ":").
Host = entry (1, Host, ":").

end.
else do:

case Protocol:

when "http" then Port = "80".
when "https" then Port = "443".
when "ftp" then Port = "21".

Page 49

otherwise do:
SetError ("002").

Host = 2.
Protocol = ?.
Port = ?.

URI = ?.

return false.
end. /* otherwise */

end. /* case */
end. /* else */
return true.

end. /* method Parse */

/***/

/* We are looking to prove form is ppp://machine/uri */
/***/

method public logical IsValidURL (input URL as character):
if index (URL, "://"™) > 1 then return true.
return false.

end. /* method */

/***/

/* Means of reseting the error state of the object. */
/***/

method public void ResetError ():
SetError ("000").

end.

/***/

/* Convert error code into error message form and store in public */
/***/

method private logical SetError (input ErrCode as character):
case ErrCode:

when "000" then ErrMessage = ErrCode + ":No Error".
when "001" then ErrMessage ErrCode + ":Not wvalid URL".

Page 50

when "002" then ErrMessage = ErrCode + ":Protocol Unknown".
end. /* case */

end. /* method */

/***/

/* method to return ErrMessage (some people prefer this.) */
/***/

method public character GetError ():
return ErrMessage.
end.

end. /* class */

Here is an example on how to use it:

define variable Parser as class amduus.web.urlparse no-undo.
Parser = new amduus.web.urlparse() .

{&OUT} Parser:Parse("http://localhost:8080/this/workshop") "
".
{&0OUT} Parser:Host "
".

{&0UT} Parser:Port "
".

{&0UT} Parser:Protocol "
".

{&0UT} Parser:URI "
".

{&0UT} Parser:GetError().

delete object Parser.

What the above code does, is we instantiate the object with a new operation.

Then we use the Parse method in the object to chop up a given URL. We can then
obtain those components via the properties that are available, ie Host, Port, Protocol,
etc.

Finally we delete the object from memory.

Page 51

Logging Tools

When developing code, often we want a log of what our algorithms are doing. The
progress run time environment provides a means of logging but sometimes we want to
use that for something else — like a global logging of what is going on.

This is a class that one can set the log level on, the name of the log file, the ability to
put lines in with an EOL or without an EOL if you need to write to the same line
repeatedly.

This is an example of a class that interacts with the file system. One of the bonuses of
using classes to interact with the file system is one no longer needs to worry about the
dreaded five stream limit. Simply make a “stream” class and use that.

class amduus.file.logfile:

define
define
define

define

define

stream mylog.
public variable date format as character no-undo.
public variable time format as character no-undo.

public variable loglevel as integer init 0 no-undo.

private variable logfilename as character no-undo.

/***/

/* Constructor: Helps us decide how things are going to be on start */
/***/

constructor public logfile

(input
input

) :

filename as character,
doappend as logical

time format = "hh:mm:ss".

/* TODO: In the future, we want "mm-dd-yyyy" or "ddd-yyyy" or

*

*

*/

"mmm dd, yyyy" etc. We need another object to help with
this and to do it in what ever language one wants.

date format = if session:date-format = "mdy" then "99-99-9999"

else "99-99-9999".

if doappend then

Page 52

output stream mylog to value (filename) append.
else
output stream mylog to value (filename).

logfilename = filename.

end. /* constructor */

/***/

/* When we do the “delete object N” statement, this code is run before */

/* the data and code are taken out of memory. */
/***/

destructor public logfile ():

end. /* destructor */

/***/

/* Write to the file with the stamp info and a end-of-line appended. */

/***/

method public void println
(input level as integer,

input lineoftext as character
) .

if level <= loglevel then
put stream mylog unformatted string (today, date format)

string (time, time format)

program-name (2)

lineoftext
SKIP.

end.

/***/

/* Write to the file without prepended stamp and the end-of-line. */

/***/

method public void print
(input level as integer,
input lineoftext as character
) :

if level <= loglevel then
put stream mylog unformatted lineoftext.

Page 53

end.

/***/

/* Close it up! */

/***/

method public void closelog():
output stream mylog close.

end.

/***/

/* Give the object the ability to clean up it's own logs. */

/***/
method public void deletelog ():

os-delete value (logfilename) .

end.

end. /* class */

And here is a quick example of using the object for logging:

define variable h as class amduus.file.logfile no-undo.

h
h
h
h
h

= new amduus.file.logfile ("/tmp/test.txt", no).
loglevel = 1.

println (1, "This is a line").

println (2, "Should not show").

closelog() .

pause.

h:

deletelog() .

delete object h.

The pause is in there so you can view the log file before the deletelog () method
removes it.

Page 54

Code Generating Object

If one has ever programmed in Webspeed using the embedded method (or even not) —
you will find yourself working with multiple languages — the ABL, HTML, and
Javascript. Here is an example object that can help with making the programming all
ABL based — a set of methods that will generate Javascript as needed when executed.

It's an example of how you can make source code that mixes up OOABL, HTML, and
Javascript become more OOABL and less of the other source. Sometimes people get
mixed up between what executes on the server and what executes on the client when
they first start Webspeed programming.

class JavascriptTools:

/**‘k******************************/

/* Simply pop up an alert box with an OOABL oriented call. */

/***/

method public static character AlertBox (input TextValue as character):
define variable Javascript as character no-undo.

Javascript = '<script language="javascript">'
+ 'alert ("' + TextValue + '")</script>'.

return Javascript.

end. /* AlertBox */

/***/

/* Redirect the browser with an OOABL oriented call. */
/***/

method public static character Redirect (input NewURL as character):
define variable Javascript as character no-undo.

Javascript = '<script language="javascript">'
+ 'location.href="' + NewURL + '";</script>'.

return Javascript.
end. /* Redirect */

end. /* class */

Page 55

Here is an example use in an E4GL program (embedded Speedscript.)

<html>

<?

JavascriptTools:AlertBox (“You have no permission to enter!”).
JavascriptTools:Redirect (ParameterManager:GetParameter (YHomePage”)) .
2>

</html>

Using this idea can be done for other languages also like postscript, pdf, graphics
libraries, and page rendering tools such as troff/groft/latex.

Page 56

OBiecTts THAT ARE USEFUL IN A UTILITARIAN MANNER

There are many data structures out there. Some are a wee bit
more complicated than the usual. Here we explore some
tools that are a bit more sophisticated than simple data
structures and libraries of useful functions. We start
introducing some ideas on how to return errors back to a
calling program as well rounding out more sophisticated
functionality.

The point being made here, is that objects encapsulating
knowledge about how to do something into methods named
to do something can make a new or junior programmer
functional very quickly. Often simply using an object is
much easier than learning the knowledge about how to make
the object.

Page 57

XML Parsing — XQuery

A useful object is this XML node walking object XQuery'®. Often one wants to read
in XML documents and access them by the idea of “Give me the value of the first
element of the fifth element of the first element in this XML document.”

This node walking class is also an example of a basic data structure known as a tree.

For example, you have a configuration file for your application that reads like:

<?xml version="1.0" ?>
<Configurations>
<IncomingRequests>
<Logging>
<LogLevel>1</LogLevel>
<LogDir>/tmp/</LogDir>
<Logging>
</IncomingRequests>
<SalesOrders>
<Logging>
<LogLevel>1</LogLevel>
<LogDir>/tmp/</LogDir>
<Logging>
</SalesOrders>
</Configurations>

and you want to know the logging level for Sales Order activities.

Instead of parsing the document with awkward loops and 4GL atomic statements for
SAX or DOM parsing, you can simply use the walkBypath() method with an
aﬁynnent(ﬁ?/Configurations[l]/SalesOrders[1]/LogLevel[1] to retrieve the
handle to the node with the data. One could say “In the first configurations tag, for the
first Sales Order therein, give me the first Log Level node.” The path is very similar
to using a directory hierarchy to reach the data you desire to work with. The delimiter
is the “/” sign, the tag name is simply the tag name, and the instance of the tag you
want is placed between the “[] symbols.

Since it is an object, you write it once and you are good to go for all other kinds of
XML documents you may encounter — something you may not encounter using

10 If you are familiar with the XQuery standard you will know this object is very incomplete — but it
is the beginnings of an XQuery object as I add to it over time. For now we keep it nice and
simple.

Page 58

specifically DOM/SAX parsing statements.

One basically creates an instance of the object and then loads in XML data with it's
LoadBy* methods. We have multiple methods to load the object's XML data with so
the object is flexible for many types of uses. (This is the power of an object — one
object has many ways to do the same thing.)

Obtain the node with the wa1kBypath() method. Once you have obtained the handle
to the object, you can use the NodeTextvalue() method to help get the TEXT value
from that node passed into it and the NodeaAttrvalue () method to obtain any
attribute that might be part of the element.

See below the listing for an example use:

class XQuery use-widget-pool:

define private variable XDocument as handle no-undo.
define public variable XMLPathDelimiter as character init "/" no-undo.
define public variable ErrMessage as character no-undo.

constructor public XQuery() :

end.

/***/

/* Given an already existing document handle, parse that puppy. */
/*************************‘k*k*k*******************k*k******************‘k****/

method public void LoadByHandle (input XDocumentHandle as handle) :
ResetError ().

if not valid-handle (XDocumentHandle) then
SetError ("003").

else
XDocument = XDocumentHandle.

end. /* method */
/****‘k‘k*****‘k*****‘k‘k******‘k*****‘k‘k****‘k‘k‘k****‘k‘k*************************/

/* Load XML with long data. */

/***/

Page 59

method public logical LoadByLongChar (input Data as longchar) :

define variable LoadOK as logical no-undo.
define variable Strings as class nu-strings no-undo.

ResetError ().

if not valid-handle (XDocument) then
create X-Document XDocument.

LoadOK = XDocument:Load ("longchar", Data, false) /* no-error */
if not LoadOK then do:

SetError ("001") .

Strings = new nu-strings{() .

Strings:long2log (Data).

delete object Strings.
end. /* 1f */

return LoadOK.

end.

/***/

/* Given a file name, load the XML document we want to parse. */
/***/

method public logical LoadByFile (input TheFileName as character):
define variable LoadOK as logical no-undo.
ResetError () .

if not valid-handle (XDocument) then
create X-Document XDocument.

LoadOK = XDocument:Load ("file", TheFileName, false) no-error.
if not LoadOK then SetError ("001").
return LoadOK.

end. /* method */

/***/

/* Save the document as a file. */

Page 60

/***/

method public logical SaveAsFile (input TheFilePath as character):
if valid-handle (XDocument) then do:
XDocument:Save ("file", TheFilePath).
return true.
end.
return false.

end. /* method */

/***/

/* Provide a means to reach the desired node by walking according to a */
/* path like /nodel[child]/node2[child]... /books[1l]/telephone[2]... */

/***/

method public handle WalkByPath (input XMLPath as character) :
define variable NodeRef as handle no-undo.
define variable SearchTagName as character no-undo.
define variable SearchTagIter as integer no-undo.
define variable SearchTagCurrIter as integer no-undo.
define variable SearchPath as character no-undo.
ResetError() .
create x—noderef NodeRef.
/* Given the document, we want the start of the XML */

XDocument:get-document-element (NodeRef) .

/* We don't want the / in front though it is semantically */
/* more understandable. */

if XMLPath BEGINS "/" then XMLPath = substring (XMLPath, 2).

/* Extract our root node and insure the pathing is cor- */
/* rect and matches the XML document. */

SearchPath = entry (1, XMLPath, XMLPathDelimiter).
SearchTagName = NodeName (SearchPath) .
SearchTagIter = ChildNumber (SearchPath) .

/* On root node, Tag iteration can only be 1 long! */

if SearchTagIter > 1 then do:

Page 61

SetError ("002") .
return ?.
end.

/* If they are looking for the root node, send it! */
/* If all we have is root node in path and it does */
/* not match, then send back unknown. */

if index (XMLPath, XMLPathDelimiter) > 0 then
XMLPath = substring (XMLPath, index (XMLPath, XMLPathDelimiter) + 1).
else

XMLPath = "".
if XMLPath = "" then
if NodeRef:Name = SearchTagName then
return NodeRef. /* Name is same on path */
else do:

SetError ("002"™) .
return ?. /* Name not same on path */
end.

/* We have more on the XMLPath to work with, we */
/* need to dive into the children of the node. */

return WalkPath (NodeRef, XMLPath).

end. /* method */

/***/

/* Recursively walk the path as specified by the path. */

/***/

method public handle WalkPath
(input Node as handle,

input XMLPath as character
)t

define variable ChildCounter as integer no-undo.
define variable SearchIter as integer no-undo.
define variable SearchTagName as character no-undo.
define variable SearchTaglIter as integer no-undo.
define variable SearchPath as character no-undo.
define variable ChildNode as handle no-undo.

create X-NodeRef ChildNode.

/* We do this for root level */

SearchPath = entry (1, XMLPath, XMLPathDelimiter).

Page 62

SearchTagName = NodeName (SearchPath) .
SearchTagIter = ChildNumber (SearchPath) .
/*
message "XMLPath " XMLPath.
message "SearchPath " SearchPath.
message "SearchTagName " SearchTagName.
message "SearchTaglter " SearchTaglter.
*/
do ChildCounter = 1 to Node:Num-Children:
/*
message "Accessing child " ChildCounter " of " Node:Num-Children "
children.".
*/
Node:get-child (ChildNode,ChildCounter).
/*
message "SearchPath " SearchPath.
message "Child is type " ChildNode:SubType.
message "NodeTextValue " NodeTextValue (ChildNode) .
message "Child Name " ChildNode:Name.
*/
if ChildNode:Name = SearchTagName and ChildNode:SubType = "ELEMENT"
then do:
SearchIter = SearchIter + 1.
/* message "Found iteration " SearchIter. */
end.
if SearchIter = SearchTagIter then do:
/*
message "Found my desired iteration. Rewriting XMLPATH".
*/
if index (XMLPath, XMLPathDelimiter) > 0 then
XMLPath = substring (XMLPath, index (XMLPath, XMLPathDelimiter) +
1)
else
XMLPath = "".
/*
message "Revised XMLPath " XMLPath.
*/
if XMLPath <> "" then do:
/* message "----- Diving into tree ------ ", o/
return WalkPath (ChildNode, XMLPath).
end.
else

return ChildNode.
end. /* if SearchlIter */

end. /* do */

Page 63

/* No such tag for our path name! */
/* message "Firing failure". */

SetError ("002") .
return ?.

end. /* method */
/***/

/* Give use the node name of the segment we desire. */
/***/

method private character NodeName (input Name as character):
return substring (Name, 1, index (Name, "[") - 1).

end. /* method */
/***/

/* Obtain the child number of the path entry the caller desires. */

/***/

method private integer ChildNumber (input Name as character):

Name = replace (Name, NodeName (Name), "").
Name = replace (Name, "[", "").
Name = replace (Name, "1", "").

return integer (Name) .

end. /* method */

/***/

/* Return an atrribute on a given node. */
/***/

method public character NodeAttrValue
(input NodeRef as handle,
input AttrName as character

) :
return NodeRef:Get-Attribute (AttrName) .

end. /* method */

/***/

/* Retrieve the CTEXT area of a node. */

/***/

Page 64

method public character NodeTextValue (input NodeRef as handle):

define variable TextNode as handle no-undo.

define variable Document as handle no-undo.

define variable Data as character no-undo.

define variable ChildIter as integer no-undo.

ResetError () .

if not valid-handle (NodeRef) then return 2.

if NodeRef:SubType <> "ELEMENT" then return 2.

create x-noderef TextNode.

/* Need to walk children because may be comment, etc. */

ChildIter = 1.

do while ChildIter <= NodeRef:num-children:
NodeRef:get-child (TextNode, ChildIter).
if TextNode:subtype = "TEXT" then leave.

end.

Data = TextNode:node-value.

delete object TextNode.

return Data.

end. /* method */

/***/

/* Opportunity to find out if an error happened or not. */
/***/

method public character GetError():
return ErrMessage.

end. /* method */

/***/

/* Set the error code to human friendly and make available to public. */
/***/

method private character SetError (input ErrCode as character):
case ErrCode:

when "000" then ErrMessage = ErrCode + ":No Error".

Page 65

when "001" then ErrMessage
when "002" then ErrMessage
when "003" then ErrMessage

ErrCode + ":No Such File".
ErrCode + ":Wrong Path For XML Schema".
ErrCode + ":Bad XML Document Handle".

end. /* case */

end. /* method */

/***/

/* Tool for implementing programmer to reset the internal error state */
/* of the object. */

/***/

method public void ResetError():
SetError ("000") .
end. /* method */

end. /* class */

Here is some example use of the Xquery object.

Here is an example use of it. Lets say we want to access information in the following
XML document:

<?xml version="1.0" 2>
<root>
<name record="0x001">
<firstname>Scott</firstname>
<lastname>Auge</lastname>
</name>
<name record="0x002">
<firstname>Lorena</firstname>
<lastname>Brunswick</lastname>
</name>
</root>

We load in an XML file containing some information about people in what amounts to
a hierarchical database''.

Then we navigate to the node containing the information we want with our path. Once
receiving it — we use the node as an argument to other methods that look at the text

11 What's old is new again in computing.

Page 66

and attribute information on the node.

Finally we clean up with the delete object statement.

def var t as class XQuery no-undo.
def var x as handle no-undo.

t = new XQuery() .
t:LoadByFile ("/tmp/test.xml") .

x = t:WalkByPath("/root[l]/name[l]/firstname[2]").
display t:ErrMessage with frame al.
display t:NodeTextValue (x) t:ErrMessage format "x(30)" with frame a.

x = t:WalkByPath("/root[l]/name[l]/lastname[1]").
display t:ErrMessage with frame Dbl.
display t:NodeTextValue(x) t:ErrMessage with frame b.

x = t:WalkByPath ("/root[1l]/name[2]").
display t:ErrMessage with frame cl.
display t:NodeAttrValue(x, "record") t:ErrMessage with frame c.

delete object t.

A few notes. You will notice we have use-widget-pool on the definition of the class.
Because we do a lot of dynamic work in the class, we want to manage all that
information in the widget pool closets to the class — the class it's self. This is a way to
protect yourself from memory leaks. It also means when you destroy your object, you
risk destroying data coming out of that object in handles (aka the node reference!)

This is an object that will definitely be in the upcoming Amduus Object Library. It
will probably have more advanced routines that will allow the user to use the path not
only in absolute terms to find data but to have a search syntax returning lists of nodes
matching the query.

Page 67

Socket Object

There is a bit of housekeeping that needs to be done with socket communications for
the ABL. Here is an example of a socket object that encapsulates all the handles,
memory pointers, etc. within a single object. The object becomes as easy to use as
calling a few methods and sending/receiving the data.

It also encapsulates the knowledge about socket programming so as the developer
doesn't really need to know about some of the nitty gritty details. All they need to
focus on is which host, port, and what data to send back and forth. The object will not
only encapsulate functionality and data (see the public and private tags) — it also
encapsulates knowledge about difficult things (like network programming which is far
different from database programming.)

class amduus.network.socket:

define public variable Revision as character
initial "$Revision$" no-undo.

define public variable ErrMessage as character no-undo.

define private variable hSocket as handle no-undo.

define private variable Heap as memptr no-undo.

define public variable CRLF as character no-undo.
/‘k**‘k***/

/* Constructor. */
/‘k‘k***‘k‘k‘k‘k*‘k‘k‘k‘k‘k**‘k**‘k‘k**‘k‘k‘k‘k‘k*‘k‘k‘k‘k‘k*****‘k‘k**‘k‘k‘k‘k***********************/

constructor public socket () :

create socket hSocket.
set-size (Heap) = 1024.

/* Many protocols like this so simply make it a constant */
CRLF = chr(13) + chr(10).

end. /* constructor */

/***/

/* Destructor. Housekeeping here! */
/****k“k*‘k‘k*k**k“k**k‘k****‘k‘k‘k****‘k‘k***k“k**k‘k*****‘k‘k*****‘k*****‘k‘k******‘k****‘k‘k***/

destructor public socket () :

Page 68

delete object hSocket.
set-size (Heap) = 0.

end. /* destructor */
/***/

/* Way for the user to use a Get* for the error state of the object. */
/***/

method public character GetError():

return ErrMessage.
end. /* method */
/***/

/* Set the error state of the object - only by the object! */

/‘k‘k***********‘k****‘k*‘k*****************‘k*‘k*****k*k*k**k*********************/

method private void SetError (input ErrCode as character):
case ErrCode:

when "000" then ErrMessage = ErrCode
when "001" then ErrMessage = ErrCode
when "002" then ErrMessage = ErrCode
when "003" then ErrMessage = ErrCode

":No Error".
":Already Connected".
":Not Connected".
":No Data On Socket".

+ + 4+ +

end. /* case */

end. /* method */
/***/

/* Allow implementor to reset the error state for next operation. */
/***/

method public void ResetError ():
SetError ("000").

end. /* method */
/***/

/* Open a connection to the remote system. */
/***/

method public logical OpenConnection
(input Host as character,

Page 69

input Port as character,
input UseSSL as logical):

define variable ConnectionParameter as character no-undo.
ResetError ().
if IsConnected() then do:

SetError ("001").
return false.

end.
ConnectionParameter = " -H " + Host
+ " -3 " + Port.
if UseSSL then ConnectionParameter = ConnectionParameter + " -ssl".

hSocket:set-socket-option("so-linger", "false").
hSocket:set-socket-option ("so-rcvtimeo", "2").
hSocket:connect (ConnectionParameter) .

return IsConnected() .

end. /* method */

/***/

/* Close the connection to the remote server. */
/***/

method public logical CloseConnection ():
ResetError () .

if hsocket:connected() then hsocket:disconnect ().
return true.

end. /* method */

/***/

/* Determine if we are connected or not. */
/***/

method public logical IsConnected():
ResetError() .

return hsocket:connected() .

Page 70

end. /* IsConnected () */
/***/

/* A means to write directly from memory to the tcp cache. */
/***/

method public logical WriteBinary (input Heap as memptr, input 1 as
integer) :

ResetError ().
if not IsConnected() then do:
SetError ("002").
return false.
end.
hSocket:write (Heap, 1, 1).
end. /* method */
/***/

/* Method to write text to the tcp cache. */

/***/

method public logical WriteText (input Data as character):
define variable LocalHeap as memptr no-undo.
ResetError ().
if not IsConnected() then do:

SetError ("002").
return false.

end.
set-size (LocalHeap) = length (Data) + 1.
put-string (LocalHeap, 1) = Data.

hSocket:write (LocalHeap, 1, length(Data)).

set-size (LocalHeap) = 0.
end. /* WriteData */
/***/

/* Determine number of bytes waiting on the tcp cache for input. */
/***/

Page 71

method public integer GetBytesAvailable():
ResetError () .
if not IsConnected() then do:
SetError ("002").
return ?.
end.
return hsocket:get-bytes-available() .

end.

/***/

/* Some polling implementations will need to pause a certain amount of */
/* of time but the PAUSE statement is really to large a period. So we */

/* use milliseconds in this one. */
/***/

method public void PauseInMilliseconds
(input TimeInMilliseconds as integer) :

define variable StartTime as int64 no-undo.
StartTime = etime.

do while etime - StartTime < TimeInMilliseconds:
end.

end.

/***/

/* Provide a means to read text oriented data from the socket. For */
/* peices of data you will probably have to call this multiple times */
/* while using GetBytesAvailable() in the implementing program. */

/***/

method public character ReadText ():

define variable ReadCache as character no-undo.
define variable HeapUsed as integer no-undo.

ResetError () .
if not IsConnected() then do:
SetError ("002").

return 2.
end.

Page 72

/* It is possible to have more in the tcp cache than the size of a */
/* 4gl character variable - so nibble what we need. */

HeapUsed = minimum (1024, hsocket:get-bytes-available()).

if HeapUsed = 0 then do:
SetError ("003") .
return "".

end.

hSocket:read (Heap, 1, HeapUsed).
ReadCache = get-string (Heap, 1, HeapUsed).
return ReadCache.

end. /* method */

/****k**k*k‘k***k‘k*k‘k*k***‘k*****k**k*k*k***k‘k*k‘k‘k************k*k*****‘k****‘k************/

/* Provide a means to read directly from tcp cache into memory and */

/* return to the implementing program. */
/‘k‘k**k“k‘k‘k‘k‘k****‘k‘k‘k****‘k‘k**k“k‘k*k‘k‘k**k*k*‘k‘k*****‘k‘k****‘k******‘k‘k*****‘k‘k**k“k‘k‘k‘k‘k**/

method public memptr ReadBinary
(output Heap as memptr,
output HeapSize as integer

) :
ResetError() .
if not IsConnected() then do:
SetError ("002").
return 7.
end.
HeapSize = hsocket:get-bytes-available().
if HeapSize = 0 then do:
SetError ("003") .
return ?.

end.

set-size (Heap) = HeapSize.
hSocket:read (Heap, 1, HeapSize).

return Heap.

end. /* method */

Page 73

end. /* class */

Here is a simple example of how to use the object to obtain a web page. Don't confuse
it for an HTTP client. In the next section, we wrap a couple of objects together (the
socket object and the url parser object) to make an HTTP object.

define variable SocketTools as class amduus.network.socket no-undo.
define variable CRLF as character no-undo.

message "Starting program".
CRLF = chr(13) + chr(10).

SocketTools new amduus.network.socket ().
SocketTools:0OpenConnection ("gaius", "80", no).
{&0UT} "<pre>".
{&0UT} SocketTools:ErrMessage SKIP.
{&0UT} SocketTools:IsConnected() SKIP.
SocketTools:WriteText ("GET / HTTP/1.1" + CRLF).
SocketTools:WriteText ("Host: gaius" + CRLF + CRLF).
{&0UT} SocketTools:ErrMessage skip.
do while SocketTools:IsConnected() :
if SocketTools:GetBytesAvailable() > 1 then
{&0UT} SocketTools:ReadText ().
else
pause 1.
end.
{&OUT} "</pre>".

SocketTools:CloseConnection ().

delete object SocketTools.

Page 74

HTTP Object

Here is an example of an object that builds off of other objects. It is an easy to use
http client that will dump information into a text file. It can easily be adapted to place
the information into a longchar too. (Some web pages will blow out a simple
character variable.)

I think you will find it delightfully easy to comprehend and it shows the reduction in
code lines needed to accomplish something when using objects.

Also it helps identify when an object should be instanced and used compared to
simply inheriting the class for that object into the new class. If it is not directly related
to the domain of the object — you should use an instance instead of trying to inherit it.

(Note this program is a little fast and loose when it comes to handling errors. As any
college professor would say — I leave that exercise to the student. :))
class amduus.network.http:

define private variable obj socket as class amduus.network.socket no-
undo.

define public variable error message as character no-undo.

define private variable crlf as character no-undo.

/***/

/* Get our goodies together. */
/***/

constructor public http ():
obj socket = new amduus.network.socket ().
crlf = chr(13) + chr(10).

end. /* constructor */

/***/

/* Housekeeping. */
/'k****‘k‘k‘k****‘k‘k****‘k‘k‘k****‘k‘k‘k****‘k‘k‘k****‘k*****‘k‘k‘k*******************‘k***/

destructor public http():

Page 75

delete object obj socket.
end.

/***/

/* Do a get that will place the data into a file. */

/***/

method public logical get text to file
(input url as character,

input filename as character

)t

define variable urltool as class amduus.network.urlparse no-undo.

urltool = new amduus.network.urlparse() .
urltool:Parse (url).

obj socket:0OpenConnection (urltool:Host, urltool:Port, no).
obj socket:WriteText ("GET " + urltool:URI + " HTTP/1.1" + crlf).
obj socket:WriteText ("Host: " + urltool:Host + crlf).
obj socket:WriteText (crlf).
output to value (filename).
do while obj socket:IsConnected() :
if obj socket:GetBytesAvailable() > 1 then
put unformatted obj socket:ReadText ().
else
pause 1.
end.
output close.
obj socket:CloseConnection() .
delete object urltool.

end.

end.

Here are some experiments to play with the code. Since the URL parser 1s used often,

Page 76

one could actually instance one in the constructor. That would be a speed increase as
it wouldn't need to be instanced each time the get text to file() method was
called. Also one could create a get _text to long() method that would simply keep
adding the received data to a long character value and return it to what ever
programming was using the http client.

Here is an example use:

define variable obj http as class amduus.network.http no-undo.

obj http = new amduus.network.http().

if obj http:get text to file ("http://gaius/", "/tmp/page.txt") = false
then

{&0UT} "An error occurred.".
else

{&OUT} "OK".

delete object obj http.

Page 77

Sometimes you will find yourself dealing with security from a “Who can connect?”
aspect. This is a quick little object that contains methods to help with breaking up IP
addresses and a match tool one can run IP masks through to determine if the IP

matches.

When writing tools like this — it is really important to put some forethought into the
class. You will notice that a lot of code uses IPv4 as part of it's name. This is because
we all know there is an IPv6 already out and coming into accepted use. One can
simply add the parsing routines for this new protocol to the object and still have the
same object available for what ever is being done with either protocol.

class iptools:

define
define
define
define

public
public
public
public
method public

ipvédclassa =
ipvdclassb =
ipvédclassc
ipvédclassd

end. /* method

method public character IdentifyIPVersion

if index (IP,
if index (IP,

end. /* method

method public character CanonicalForm

variable
variable
variable
variable

void DisassembleIPv4Address

CanonicalForm
CanonicalForm
CanonicalForm
CanonicalForm

*/

ll.")

ll:ll)

*/

Some IP Tools

ipvédclassa
ipvédclassb
ipvédclassc
ipvédclassd

entry
entry
entry
entry

—~ o~~~

return string(integer (IPClass),

end.

/* Do the numbers match an exact number or * per class? */

as
as
as
as

> 0 then return
> 0 then return

character
character
character
character

Ip, "."
Ip, "."
e, "."
e, "."

ny4n,
"V6 LU

(input IPClass as character):

11999u) .

method public logical DoesMatchMask

Page 78

no-undo.
no-undo.
no-undo.
no-undo.

(input IP as character):

)) .
)) .
)) .
)) .

(input IP as character):

(input IP as character,
input Mask as character):

define variable IsMatch as logical no-undo.
define variable NetworkClass as character no-undo.

IsMatch = no.

DisassembleIPv4Address (IP) .

NetworkClass = entry(l, Mask, ".").

IsMatch = (NetworkClass = "*" or CanonicalForm (NetworkClass) =
ipvédclassa) .

NetworkClass = entry (2, Mask, ".").

IsMatch = ((NetworkClass = "*" or CanonicalForm (NetworkClass)
ipv4classb) and IsMatch).

NetworkClass = entry(3, Mask, ".").

IsMatch = ((NetworkClass = "*" or CanonicalForm (NetworkClass)
ipv4dclassc) and IsMatch).

NetworkClass = entry (4, Mask, ".").

IsMatch = ((NetworkClass = "*" or CanonicalForm (NetworkClass)
ipv4dclassd) and IsMatch).

return IsMatch.

end. /* method */

end. /* method */

Here are some example uses of the object:

define variable I as class iptools no-undo.

I = new iptools().

{&0OUT} I:IdentifyIPVersion ("127.0.0.1") " ",

I:DisassembleIPv4Address ("127.0.0.1").
{&0OUT} I:ipv4classa " | ".

{&0OUT} I:ipv4classb " | ".
{&0OUT} I:ipv4classc " | ".
{&OUT} I:ipvé4classd " | "

{&0UT} I:DoesMatchMask ("127.0.1.1", "127.*.*.1").

delete object I.

Page 79

Serialization — Saving an object

When one wants to save a variable or temp-table, often one simply writes it to a file.
But then, how does one actually save an object?

Pretty much the same way. Only instead of holding the values of one variable, we
construct a method to saving the values of all the data portions of the object instance
in the method.

In order to do this, we use this class which will construct an XML document for us.
The implementing programmer can then save off the XML document file or place it
into a database record. When that instance of the object is needed at a later time — it
can be easily recalled.

This class is used by the class that will implement the
serialization — this class can't do the serialization it's self for a
sub-class that implements it. It is a tool for the programmer to
provide a serialization service in the class.

Of particular interest is one could even save it off as a long char and pass it over to
another computer, un-serialize the object and that object would be a mirror of what
was happening or set up on the originating system. This is a way to make objects in a
distributed application system'”.

If the object is simple and does not use any database entries, one can simply save all
the properties that compose the object. If the object does use the database, then one
has two choices. One may want to store the key information to re-finding the records
when the object is instantiated again with the serialized data; or the current data in the
object is more important than the data in the database and so the data must be stored
for un-serialization.

Below is a tool for helping to construct the XML to store the serialized version of the
data into and to obtain the un-serialized data out of. In usual use, for any objects you
need to serialize or unserialize, you will want to inherit from this class.

12 Applications that are distributed across two or more hardware systems.

Page 80

/*
/*

/*
/*
/*

Objects that need to be serialized and unserialized will */
find this useful. */
Note the use of the %1% placeholder - we build by replacing */
this macro with the serialized data and then reinserting */
the macro at the end of the newly serialized data. */

&GLOBAL-DEFINE PLACEHOLDER "%1%"

cl

ass Serializer:

define protected variable SerializedData as longchar no-undo.
define private variable XQuery as class XQuery no-undo.

/***/

/* Initialize our object upon instantiating. */
/***/

constructor public Serializer ():
Reset ().
XQuery = new XQuery() .

end. /* constructor */

/***/

/* When deleting, we need to get rid of our XQuery object. */

/***/

destructor public Serializer ():
delete object XQuery.

end. /* destructor */

/***/

/* Reset the object for re-use. */
/***/

method public void Reset () :

SerializedData = "<?xml version=~"1.0~" ?2>"
+ "<serialized>" + {&PLACEHOLDER} + "</serialized>".

end. /* method */

/***/

/* Return the data in fully serialized form. */

Page 81

/***/

method public longchar GetSerialized() :
return replace (SerializedData, {&PLACEHOLDER}, "").

end. /* method */

/***/

/* Add data to the serialized data. */

/***/

method public void AddSerializedData
(input DataName as character,

input DataValue as character,

input DataType as character

) :

define variable NewSerialized as longchar no-undo.

NewSerialized = '<' + DataName
+ ' type="' + DataType + '">'
+ DataValue
+ '</' + DataName + '>'
+ {&PLACEHOLDER} .

SerializedData = replace (SerializedData, {&PLACEHOLDER},
NewSerialized) .

end. /* method */

/***/

/* Allow the caller to set the serialized data for use with x/

/* GetSerializedData. x/
/***/

method public void SetSerialized (input Data as longchar):
SerializedData = Data.

end. /* method */

/***/

/* After using SetSerialized, one can parse it with this. Do not */
/* use until after use of GetSerialized because the internal rep */
/* will have the placeholder in it screwing the XML load. */

/***/

method public logical GetSerializedData

Page 82

(input DataName as character,
output DataType as character,
output DataValue as character

) ¢
define variable NodeRef as handle no-undo.
create x-noderef NodeRef.

XQuery:LoadByLongChar (SerializedData) .

NodeRef = XQuery:WalkByPath ("/serialized[1]/" + DataName + "[1]").
if NodeRef = ? then return false.

DataValue = XQuery:NodeTextValue (NodeRef) .

DataType = XQuery:NodeAttrValue (NodeRef, "type").

return true.

end. /* method */

end. /* class */

Here is some example code used for testing the Serialization object. In real use — this
code wouldn't be so procedural as below but would be contained in methods called
Serialize () and Unserialize (). Serialize could return a longchar that contains
the XML to be stored or transported. Unserialize would accept the 1ongchar and
chop it up into the variable's values. Unfortunately — since classes can have such a
diverse set of data you will need to write serialize () and Unserialize () methods
specific to the function.

In this test, the “object” has three properties — This, That, and CurrentNumber.
We use the AddSerializedData () function to add these data to the serialization
construct (basically an XML document.)

When we are ready to store the serialization of the object, we use the
GetSerialized () function to obtain the XML document containing all the data.

Now you have an object that you wish to restore to its previous value. Simply
instance that object and call method Unserialize () that you would write custom
to that object.

The Unserialize () method would use the Serializer class to reset the variables.
First one would obtain the XML from a file or database record. Then use the
SetSerialized() function to load the XML saved with the
GetSerialized() into the object. From there, you can wuse the

Page 83

GetSerializedData () method to pull back the variables as you need.

Below is some example code:

/* Place this in a method */
define variable t as class Serializer no-undo.
t = new Serializer ().

t:AddSerializedData ("This", "Scott", "character").
t:AddSerializedData ("That", "Craig", "character").
t:AddSerializedData ("CurrentNumber", "1", "integer").

/* Prep for yanking values out */
t:SetSerialized(t:GetSerialized()).

define variable DataVal as character.
define variable DataType as character.

t:GetSerializedData ("That", output DataType, output DataVal).

display "That" DataType DataVal with frame b.

down with frame b.

t:GetSerializedData ("CurrentNumber", output DataType, output DataVal).
display "CurrentNumber" DataType DataVal with frame b.

delete object t.
Example Data

<serialized><This type="character">Scott</This><That
type="character">Craig</That><CurrentNumber
type="integer">1</CurrentNumber></serialized>

You can get much more sophisticated than above — you will notice that the type is
available should you want to use a dynamic temp table in some way.

If you need to serialize a table, then I would create an entry like
“tablename.length” such as “Customers.length” to note the number of entries.
Then use names like tablename. fieldname.n for each piece of data in the table — so
for row 1 one would name the data “cCustomer.Name.1” so it is easier to understand
how much data you will be pulling back.

Page 84

OBJecTSs THAT INTERACT WITH THE DATABASE

We've seen some objects that are pretty independent of
transactional interaction with a database. Here we explore
some simple objects that do interact with the database.

Page 85

Dynamic Query Object
Anyone familiar with my DynTookKit programming include made available at:

http://www.oehive.org/amduus/

should recognize this as the class version of the functionality.

In short, this class makes the use of dynamic queries simple to use. One simply
instantiates the class, throw it the FOR statement you wish it to work with, navigate
with some iterating methods and pull the results out.

So this is an example of using an object to read from the database. It does have some
routines for writing to the database but I leave those to the reader to experiment with.

Following is the code and an example for using it.

/***/

/* This is a re-write from dyntoolkit.i to a class oriented dynamic query */
/* manager. */
/***/

CLASS DynToolKit:

DEFINE PUBLIC VARIABLE RCSVersionidyntoolkitii AS CHARACTER
INIT "$Id: dyntoolkit.i,v 1.9 2006/10/20 04:50:09 sauge Exp sauge $" NO-UNDO.

/********************‘k**/

/* When the application runs against one database, it might be worth it to */
/* set this preprocessor to NO to prevent additional code running that does */
/* not need to run. Leaving it as YES will not effect single DB applic- */
/* actions - merely that it will run through some code that it doesn't need */
/* to. I would leave it as YES, but I know there are performance junkies out*/
/* there. See documentation for more information. */

/*‘k‘k‘k**‘k‘k‘k**‘k‘k‘k**‘k‘k‘k**‘k‘k‘k**‘k‘k‘k**‘k‘k‘k**‘k‘k‘k**‘k‘k‘k**‘k‘k‘k**‘k‘k************************/

DEFINE PUBLIC VARIABLE UseMultiDBs AS LOGICAL INIT YES NO-UNDO.

/***/

/* When using an Oracle DB, sometimes the schema holder pops up in the list. */
/* It brings everything to a grinding halt with a 916 error. Choose to ig- */
/* nor this DB(s). */
/***/

DEFINE PUBLIC VARIABLE IgnoreDBNames AS CHARACTER NO-UNDO.

/***‘k*k***‘k*k***‘k*k***‘k*k********‘k*k********‘k*k***‘k*k*****k***‘k*k**********************/

/* We keep a list of our dynmically created objects in this temp-table so */

Page 86

*/

/* we can dynamically clean house. One of the bad things though - is that */
/* unless this table is made global - the METHOD PUBLICs only run in the scope of

/* of this table. */

/***/

DEFINE TEMP-TABLE ttDynToolKit

FIELD QryHndl AS HANDLE /* Use the table with multiple queries */
FIELD TblHndl AS HANDLE /* How we reach the buffers of the query */
FIELD TblName AS CHARACTER. /* For the getvalue METHOD PUBLICs. */

/*‘k**************‘k***k*****k*‘k********k*‘k********k**********k**********************/

/* Use these for error reporting */
/‘k**********************************‘k****‘k*********‘k**************************/

DEFINE PUBLIC VARIABLE cDyn ErrCode AS CHARACTER NO-UNDO.
DEFINE PUBLIC VARIABLE cDyn ErrMsg AS CHARACTER NO-UNDO.

/***/

/* Determine the tables available in the given query. */
/***/

METHOD PUBLIC CHARACTER dyn gettables (INPUT cQry AS CHARACTER) :

DEFINE VARIABLE ilIter AS INTEGER NO-UNDO.

DEFINE VARIABLE iIterMax AS INTEGER NO-UNDO.

DEFINE VARIABLE cToken AS CHARACTER NO-UNDO.

DEFINE VARIABLE cTblList AS CHARACTER INIT "" NO-UNDO.
DEFINE VARIABLE iDBSeq AS INTEGER NO-UNDO.

DEFINE VARIABLE lIsTable AS LOGICAL NO-UNDO.

/‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k**************************/

/* Determine the number of tokens in our query */
/****‘k****‘k****‘k****‘k***************************/

ASSIGN iIterMax = NUM-ENTRIES (cQry, " ").
/***/
/* Check which tokens are files in the DB. */

/***/

/**/

/* This code runs best on multi DB apps. */

/* SGA: Inspired by Dayne May daynem @ linx.com.au*/
/******************‘k*******************************/

IF UseMultiDBs THEN DO:

TOKEN_ LOOP:
DO iIter = 1 TO ilterMax:

ASSIGN cToken = ENTRY (iIter, cQry, " ").

Page 87

DB_LOOP:
DO iDBSeq = 1 TO NUM-DBS:

IF CAN-DO (IgnoreDBNames, LDBNAME (iDBSeq)) THEN NEXT.

CREATE ALIAS TEMPDB FOR DATABASE VALUE (LDBNAME (iDBSeq)).

/**/

/* Because CREATE ALIAS statement doesn't take affect */

/* for the current compilation, split out the FIND. */
/****************************‘k***k**********************/

RUN dyn findinschema.p
(INPUT cToken,
OUTPUT l1lIsTable).

IF 1IsTable AND NOT CAN-DO (cTblList, cToken) THEN DO:
ASSIGN cTblList = cTblList + "," + cToken.
NEXT TOKEN LOOP.

END.

/* Useful for debugging on multi databases

ELSE DO:

MESSAGE "Could Not Find " cToken.

END.

*/

END. /* DO iDBSeg = 1 TO NUM-DBS */
END. /* DO ilter = 1 TO ilterMax */

END. /* IF UseMultiDBs */

/***/

/* This code runs best on single DB apps. */
/‘k‘k‘k*******‘k‘k‘k**‘k‘k‘k**‘k‘k‘k***‘k‘k**‘k‘k‘k****‘k**‘k‘k‘k**‘k*/

ELSE DO:
DO iIter = 1 TO iIterMax:
ASSIGN cToken = ENTRY (iIter, cQry, " ").
IF CAN-FIND(FIRST File WHERE File. File-Name = cToken) THEN DO:

IF NOT CAN-DO(cTblList, cToken) THEN ASSIGN cTblList = cTblList + "," +
cToken.

END. /* IF CAN-FIND() */
END. /* DO iIter = 1 TO iIterMax */

END. /* ELSE IF UseMultiDBs */

Page 88

/***/

/* We always end up with a closing , from */

/* above so prune that out. */
/***/

IF cTblList > "" THEN ASSIGN cTblList = SUBSTRING (cTblList, 2).
RETURN cTblList.
END. /* METHOD PUBLIC GetTables */

/***/

u i u u u .
/* Open a dynamic ery and return a handle to that er */
/*********‘k************************‘k**/

METHOD PUBLIC HANDLE dyn open (INPUT cQry AS CHARACTER) :

DEFINE VARIABLE cBufferList AS CHARACTER NO-UNDO.
DEFINE VARIABLE cBufferName AS CHARACTER NO-UNDO.

DEFINE VARIABLE ilter AS INTEGER NO-UNDO.
DEFINE VARIABLE iMaxIter AS INTEGER NO-UNDO.
DEFINE VARIABLE hQryHndl AS HANDLE NO-UNDO.
DEFINE VARIABLE hTblHndl AS HANDLE NO-UNDO.
DEFINE VARIABLE lStatus AS LOGICAL NO-UNDO.

/**/

/* Prep our error variables in case something goes bad. */
/**/

ASSIGN cDyn_ErrCode = "000"
cDyn ErrMsg = "No Error:'

v

+ cQry.

/**/

/* Create a query and do that memory stuff. */
/**/

CREATE QUERY hQryHndl.

/**/

/* Determine buffers needed for our query. */
/**/

ASSIGN cBufferList = dyn gettables (cQry)
iTter = 0.
iMaxIter = NUM-ENTRIES (cBufferList).
/* MESSAGE "cBufferList = " cBufferList. */

IF cBufferList = "" THEN DO:

Page 89

ASSIGN cDyn ErrCode = "102"
cDyn ErrMsg = "Could Not Determine Tables:" + cQry.

RETURN 2.

END. /* IF NOT lStatus */

/**/

/* Allocate buffer space and "remember" them. */
/**/

DO iIter = 1 TO iMaxIter:
ASSIGN cBufferName = ENTRY (iIter, cBufferList).
/* MESSAGE "cBufferName = " cBufferName. */
CREATE BUFFER hTblHndl FOR TABLE cBufferName.
CREATE ttDynToolKit.
ASSIGN ttDynToolKit.QryHndl = hQryHndl
ttDynToolKit.TblHndl = hTblHndl

ttDynToolKit.TblName = cBufferName.

END. /* FOR ilter = */

/**/

/* Lets assign our buffers to the query */
/**/

FOR EACH ttDynToolKit NO-LOCK
WHERE ttDynToolKit.QryHndl = hQryHndl:

hQryHndl :ADD-BUFFER (ttDynToolKit.TblHndl) .

END. /* FOR EACH */

/*********************‘k*k*********************************/

/* Let's open er up. */
/**/

ASSIGN 1lStatus = hQryHndl:QUERY-PREPARE (cQry) NO-ERROR.

IF NOT 1lStatus THEN DO:

ASSIGN cDyn ErrCode = "100"
cDyn ErrMsg = "Could Not Prepare:" + cQry.
RETURN 2.

END. /* IF NOT lStatus */

ASSIGN lStatus = hQryHndl:QUERY-OPEN () NO-ERROR.

Page 90

IF NOT 1lStatus THEN DO:

ASSIGN cDyn ErrCode = "101"
cDyn ErrMsg = "Could Not Open:" + cQry.
RETURN 2.

END. /* IF NOT lStatus */

/**/

/* Return a handle to the goods. */
/**/

RETURN hQryHndl.

END. /* METHOD PUBLIC dyn open */

/***/
/* Delete all the buffers and then the query (or what ever order!) */
/* If you do not call this - YOU WILL HAVE MEMORY LEAKS. */

/***/

METHOD PUBLIC LOGICAL dyn_close (INPUT hQryHndl AS HANDLE) :
hQryHndl : QUERY-CLOSE () .

FOR EACH ttDynToolKit EXCLUSIVE-LOCK
WHERE ttDynToolKit.QryHndl = hQryHndl:

DELETE OBJECT ttDynToolKit.TblHndl.
END. /* FOR EACH */
DELETE OBJECT hQryHndl.

END. /* METHOD PUBLIC dyn close */
/***/

/* Like named wrapped around get next method. */
/***/

METHOD PUBLIC LOGICAL dyn next (INPUT hQryHndl AS HANDLE) :

hQryHndl :GET-NEXT.
END. /* METHOD PUBLIC dyn_next */
/*****~k~k~k~k~k********************~k~k~k~k~k**/

/* Like named wrapped around get prev method. */
/**k“k‘k*k*k*k“k‘k*k*k*k“k‘k*k*k*k“k‘k*k*k*k“k‘k*k*k*k“k‘k*k**k“k‘k*k**k“k‘k*k******k*k“k‘k*k*k*k“k‘k*k***‘k*********‘k********/

METHOD PUBLIC LOGICAL dyn prev (INPUT hQryHndl AS HANDLE) :

hQryHndl :GET-PREV.

Page 91

END. /* METHOD PUBLIC dyn prev */

/***/

/* Slip to the end of the result set. */
/***/

METHOD PUBLIC LOGICAL dyn last (INPUT hQryHndl AS HANDLE) :
hQryHndl:GET-LAST.

END.

/***/

/* Slip to the beginning of the result set. */

/****‘k**************‘k***/

METHOD PUBLIC LOGICAL dyn first (INPUT hQryHndl AS HANDLE) :
hQryHndl:GET-FIRST.
END.

/**‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k************************/

/* Determine if we are at the end or before start of the query. */
/*‘k‘k***‘k‘k***‘k****‘k‘k***‘k****‘k‘k***‘k‘k***‘k****‘k****‘k****‘k****‘k****‘k***************/

METHOD PUBLIC LOGICAL dyn goe (INPUT hQryHndl AS HANDLE) :
RETURN hQryHndl:QUERY-OFF-END.
END.

/***/

/* Pull a string version of the data off the field buffer. */
/* The TblFld is meant to be called as table.field like in usual 4GL */
/* Right now this doesn't handle same table different DBs. */

/***/

METHOD PUBLIC CHARACTER dyn getvalue (INPUT hQryHndl AS HANDLE,
INPUT cTblFld AS CHARACTER) :

DEFINE VARIABLE hFl1dHndl AS HANDLE NO-UNDO.
DEFINE VARIABLE cValue AS CHARACTER NO-UNDO.

FIND ttDynToolKit EXCLUSIVE-LOCK
WHERE ttDynToolKit.QryHndl = hQryHndl

AND ttDynToolKit.TblName = ENTRY (1, cTblFld, ".").
IF NOT AVAILABLE ttDynToolKit THEN RETURN ?.

ASSIGN hFldHndl = ttDynToolKit.TblHndl:BUFFER-FIELD (ENTRY (2, cTblFld, ".")).

RETURN STRING (hF1dHndl:BUFFER-VALUE) .

Page 92

END. /* METHOD PUBLIC dyn getvalue () */

/*‘k**‘k****‘k****‘k********************/

/* Pull a RAW version of the data off the field buffer. */
/* The TblFld is meant to be called as table.field like in usual 4GL */
/* Right now this doesn't handle same table different DBs. */

/***/

METHOD PUBLIC RAW dyn getvalue raw (INPUT hQryHndl AS HANDLE,
INPUT cTblFld AS CHARACTER) :

DEFINE VARIABLE hFldHndl AS HANDLE NO-UNDO.
DEFINE VARIABLE cValue AS CHARACTER NO-UNDO.

FIND ttDynToolKit EXCLUSIVE-LOCK
WHERE ttDynToolKit.QryHndl = hQryHndl
AND ttDynToolKit.TblName = ENTRY (1, cTblFld, ".").
IF NOT AVAILABLE ttDynToolKit THEN RETURN ?.
ASSIGN hFldHndl = ttDynToolKit.TblHndl:BUFFER-FIELD (ENTRY (2, cTblFld, ".")).

RETURN hFldHndl:BUFFER-VALUE.

END. /* METHOD PUBLIC dyn getvalue raw () */

/***/

/* Pull a ROWID of the record off the field buffer. */
/* The TblFld is meant to be called as table.field like in usual 4GL */
/* Right now this doesn't handle same table different DBs. */

/**‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k************************/

METHOD PUBLIC ROWID dyn getvalue rowid (INPUT hQryHndl AS HANDLE,
INPUT cTblName AS CHARACTER) :

DEFINE VARIABLE hTblHndl AS HANDLE NO-UNDO.
FIND ttDynToolKit EXCLUSIVE-LOCK
WHERE ttDynToolKit.QryHndl = hQryHndl

AND ttDynToolKit.TblName = cTblName.
IF NOT AVAILABLE ttDynToolKit THEN RETURN 2.
hTblHndl = ttDynToolKit.TblHndl.

RETURN hTblHndl:ROWID.

END. /* METHOD PUBLIC dyn getvalue rowid () */

/***/

/* Pull a RECID of the record off the field buffer. */
/* The TblFld is meant to be called as table.field like in usual 4GL */
/* Right now this doesn't handle same table different DBs. */

/***/

Page 93

METHOD PUBLIC RECID dyn getvalue recid (INPUT hQryHndl AS HANDLE,
INPUT cTblName AS CHARACTER) :

DEFINE VARIABLE hTblHndl AS HANDLE NO-UNDO.
FIND ttDynToolKit EXCLUSIVE-LOCK
WHERE ttDynToolKit.QryHndl = hQryHndl

AND ttDynToolKit.TblName = cTblName.
IF NOT AVAILABLE ttDynToolKit THEN RETURN 2.
hTblHndl = ttDynToolKit.TblHndl.

RETURN hTblHndl:RECID.

END. /* METHOD PUBLIC dyn getvalue recid () */

/***/

/* Given a table.field, determine the field type. */
/* The TblFld is meant to be called as table.field like in usual 4GL */
/* Right now this doesn't handle same table different DBs. */

/***/

METHOD PUBLIC CHARACTER dyn fieldtype (INPUT hQryHndl AS HANDLE,
INPUT cTblFld AS CHARACTER) :

DEFINE VARIABLE hFldHndl AS HANDLE NO-UNDO.
DEFINE VARIABLE cValue AS CHARACTER NO-UNDO.

FIND ttDynToolKit EXCLUSIVE-LOCK
WHERE ttDynToolKit.QryHndl = hQryHndl
AND ttDynToolKit.TblName = ENTRY (1, cTblFld, ".").
IF NOT AVAILABLE ttDynToolKit THEN RETURN ?.
ASSIGN hFldHndl = ttDynToolKit.TblHndl:BUFFER-FIELD (ENTRY (2, cTblFld, ".")).

RETURN hF1dHndl:DATA-TYPE.

END. /* METHOD PUBLIC dyn fieldtype () */

/***/

/* Given a table.field, determine the field type. */
/* The TblFld is meant to be called as table.field like in usual 4GL */
/* Right now this doesn't handle same table different DBs. */
/* WARNING: THIS IS NOT TESTED. */

/***/

METHOD PUBLIC HANDLE dyn fieldhdl (INPUT hQryHndl AS HANDLE,
INPUT cTblFld AS CHARACTER) :

DEFINE VARIABLE hFldHndl AS HANDLE NO-UNDO.
DEFINE VARIABLE cValue AS CHARACTER NO-UNDO.

FIND ttDynToolKit EXCLUSIVE-LOCK

Page 94

WHERE ttDynToolKit.QryHndl hQryHndl
AND ttDynToolKit.TblName = ENTRY (1, cTblFld, ".").

IF NOT AVAILABLE ttDynToolKit THEN RETURN 2.
ASSIGN hFldHndl = ttDynToolKit.TblHndl:BUFFER-FIELD(ENTRY (2, cTblFld, ".")).
RETURN hFldHndl.

END. /* METHOD PUBLIC dyn fieldhdl () */

KKK K K KKK KKK K K K K o ok ok o ok Kk K K K K K K KK K K K o o ok kK kK K K K K K K K K K ok ok ok ok kK K K K K K K K K Kk ok kK

/* Given a query and table name, return the buffer table for the table. */
/***/

METHOD PUBLIC HANDLE dyn tablehdl (INPUT hQryHndl AS HANDLE,
INPUT cTableName AS CHARACTER) :

FIND ttDynToolKit NO-LOCK
WHERE ttDynToolkit.QryHndl = hQryHndl
AND ttDynToolkit.TblName = cTableName
NO-ERROR.
IF NOT AVAILABLE ttDynToolKit THEN RETURN ?.
RETURN ttDynToolKit.TblHndl.

END. /* METHOD PUBLIC dyn tblhndl */

/***/

/* Provide a means of returning the number of results in a query. */
/* Running this on 9.1C and getting zero even though there is a result set */
/* greater than zero. */

KKK KKK KK KKK KKK KKK KK K K o ok ok kKK K K K KK K K K K KKK K KKK K K K K K ok ok ok kR kK K K K K K K K K kK
METHOD PUBLIC INTEGER dyn numresults (INPUT hQryHndl AS HANDLE) :

DEFINE VARIABLE iNum AS INTEGER NO-UNDO.

ASSIGN iNum = hQryHndl:NUM-RESULTS.

RETURN iNum.

END. /* METHOD PUBLIC dyn numresults */

/*‘k***k**********k*‘k***k*****k*‘k***k*****k*‘k***k*****k*****k*****k*‘k***k*****************/

/* Given a query handle, build up the ttDynToolKit table from it. Useful */
/* for when a query handle is passed into an external procedure and one */
/* wants to use the tool kit's METHOD PUBLICs.

*/

/***/

METHOD PUBLIC LOGICAL dyn gryinfo (INPUT hQryHndl AS HANDLE) :

DEFINE VARIABLE iCurBufSeq AS INTEGER NO-UNDO.

Page 95

/**/

/* Clean up the ttDynToolKit table of this query so */.
/* we don't get duplicates. */

/**/

FOR EACH ttDynToolKit EXCLUSIVE-LOCK
WHERE ttDynToolKit.QryHndl = hQryHndl:

DELETE ttDynToolKit.
END.

/**/

/* Rebuild the table from the info available in the */
/* dynamic objects. */
/**/

DO iCurBufSeq = 1 TO hQryHndl:NUM-BUFFERS:
CREATE ttDynToolKit.
ASSIGN ttDynToolkit.QryHndl = hQryHndl
ttDynToolKit.TblHndl = hQryHndl:GET-BUFFER-HANDLE (iCurBufSeq)
ttDynToolKit.TblName = ttDynToolKit.TblHndl:TABLE.
END. /* DO iCurBufSeq = 1 TO hQryHndl:NUM-BUFFERS */
END. /* METHOD PUBLIC dyn gryinfo () */
/**‘k****‘k****‘k****‘k****‘k****‘k****‘k*******************‘k************************/

/* Simple dump routine for the table. */

/**‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k************************/

METHOD PUBLIC LOGICAL dyn dump (INPUT cFileName AS CHARACTER) :
OUTPUT TO VALUE (cFileName) .
FOR EACH ttDynToolKit EXCLUSIVE-LOCK:

EXPORT INT (ttDynToolkit.QryHndl) INT(ttDynToolKit.TblHndl)
ttDynToolKit.TblName.

END. /* FOR EACH ttDynToolKit */

OUTPUT CLOSE.
END.
/***/

/* Given a table name, determine the number of fields on it. */
/***/

METHOD PUBLIC INTEGER dyn numfields (INPUT hQryHndl AS HANDLE,
INPUT cTableName AS CHARACTER) :

Page 96

FIND ttDynToolKit NO-LOCK
WHERE ttDynToolkit.QryHndl = hQryHndl
AND ttDynToolkit.TblName = cTableName

NO-ERROR.

IF NOT AVAILABLE ttDynToolKit THEN RETURN 2.

RETURN ttDynToolKit.TblHndl:NUM-FIELDS.
END. /* METHOD PUBLIC dyn numfields */
/***/

/* Given a query handle, how many tables are in the query . */
/****‘k**********************************‘k****‘k****‘k***************************/

METHOD PUBLIC INTEGER dyn numtables (INPUT hQryHndl AS HANDLE) :
DEFINE VARIABLE iCnt AS INTEGER INIT O NO-UNDO.

FOR EACH ttDynToolKit NO-LOCK
WHERE ttDynToolkit.QryHndl = hQryHndl:

ASSIGN iCnt = iCnt + 1.
END.
RETURN iCnt.
END. /* METHOD PUBLIC dyn numtables () */
/***/

/* Given a query handle, what are the table names . */
/***/

METHOD PUBLIC CHARACTER dyn listtables (INPUT hQryHndl AS HANDLE) :
DEFINE VARIABLE cList AS CHARACTER INIT "" NO-UNDO.

FOR EACH ttDynToolKit NO-LOCK
WHERE ttDynToolkit.QryHndl = hQryHndl:

ASSIGN cList = cList + ttDynToolKit.TblName + ",".
END.
ASSIGN cList = SUBSTRING (cList, 1, LENGTH (cList) - 1).
RETURN cList.
END. /* METHOD PUBLIC dyn numtables () */

/***/

/* Given a query handle, what are the table names . */

Page 97

/*‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k************************/

METHOD PUBLIC CHARACTER dyn listfields (INPUT hQryHndl AS HANDLE,

INPUT cTableName AS CHARACTER) :

DEFINE VARIABLE iCntFields AS INTEGER NO-UNDO.

DEFINE VARIABLE iCurField AS INTEGER NO-UNDO.

DEFINE VARIABLE cList AS CHARACTER INIT "" NO-UNDO.

DEFINE VARIABLE hField AS HANDLE NO-UNDO.

ASSIGN iCntFields = dyn numfields (hQryHndl, cTableName) .
IF iCntFields = ? THEN RETURN ?.

FIND ttDynToolKit NO-LOCK

WHERE ttDynToolkit.QryHndl = hQryHndl
AND ttDynToolKit.TblName = cTableName.

DO iCurField = 1 TO iCntFields:

ASSIGN hField = ttDynToolKit.TblHndl:BUFFER-FIELD (iCurField) .

ASSIGN cList = cList + hField:Name + ",".

END.

ASSIGN cList = SUBSTRING(cList, 1, LENGTH(cList) - 1).

RETURN cList.

END. /* METHOD PUBLIC dyn numtables () */

/**‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k****‘k************************/

/***/

/*

/*
/*

PLEASE READ

/ \

| |
(A lroeme e /)
> "=,)Y /7 N_)| =" <
(/"=. "= I/ /\ .= =")
" (N yroL="

T\ JTTTIITII /="

=" \IIIIII/ |"=.
_ 7.=ll7.="\ /|v=.7n= _ _
(_-:II_.:II S > II:._II:._/)
> .=" DO NOT EDIT FRIVOLOUSLY! " <
/ \)

WARNING: ASSIGNING A FIELD USED TO ORDER THE QUERY WILL HOSE THE QUERY.

*/

*/

/***/

/***/

Page 98

/***/

/* Progress has no LOGICAL METHOD PUBLIC. Here we set up a way to translate */
/* CHAR representations of logicals to a actual progress data type of */
/* LOGICAL. */

/***/

METHOD PUBLIC LOGICAL set logical (INPUT cText AS CHARACTER) :
IF cText = ? THEN RETURN 2.
IF CAN-DO("Y,YES,TRUE", cText) THEN RETURN TRUE.
RETURN FALSE.

END. /* METHOD PUBLIC SET LOGICAL */

/***/

/* Allow the setting of any type values via a string source. No error */

/* checking - assume the programmer has a clue. */
/***/

METHOD PUBLIC LOGICAL dyn set (INPUT hQryHndl AS HANDLE,
INPUT cTblFld AS CHARACTER,
INPUT cText AS CHARACTER) :

DEFINE VARIABLE hFldHndl AS HANDLE NO-UNDO.
DEFINE VARIABLE cValue AS CHARACTER NO-UNDO.

FIND ttDynToolKit EXCLUSIVE-LOCK
WHERE ttDynToolKit.QryHndl = hQryHndl
AND ttDynToolKit.TblName = ENTRY (1, cTblFld, ".").
IF NOT AVAILABLE ttDynToolKit THEN RETURN FALSE.
ASSIGN hFldHndl = ttDynToolKit.TblHndl:BUFFER-FIELD(ENTRY (2, cTblFld, ".")).
CASE hF1dHndl:DATA-TYPE:
WHEN "CHARACTER" THEN ASSIGN hF1dHndl:BUFFER-VALUE = cText.
WHEN "LOGICAL" THEN ASSIGN hF1dHndl:BUFFER-VALUE = SET LOGICAL (cText).
WHEN "DATE" THEN ASSIGN hF1ldHndl:BUFFER-VALUE = DATE (cText) .
WHEN "INTEGER" THEN ASSIGN hF1dHndl:BUFFER-VALUE = INTEGER (cText).
WHEN "DECIMAL" THEN ASSIGN hF1dHndl:BUFFER-VALUE = DECIMAL (cText).

END. /* CASE */

RETURN TRUE.

Page 99

END. /* METHOD PUBLIC dyn_setc() */

/*‘k**‘k****‘k****‘k********************/

/* Allow the setting of character type values. No error checking - assume */

/* the programmer has a clue. */
/***/

METHOD PUBLIC LOGICAL dyn setc (INPUT hQryHndl AS HANDLE,
INPUT cTblFld AS CHARACTER,
INPUT cText AS CHARACTER) :

DEFINE VARIABLE hFldHndl AS HANDLE NO-UNDO.
DEFINE VARIABLE cValue AS CHARACTER NO-UNDO.

FIND ttDynToolKit EXCLUSIVE-LOCK
WHERE ttDynToolKit.QryHndl = hQryHndl
AND ttDynToolKit.TblName = ENTRY (1, cTblFld, ".").
IF NOT AVAILABLE ttDynToolKit THEN RETURN FALSE.
ASSIGN hFldHndl = ttDynToolKit.TblHndl:BUFFER-FIELD (ENTRY (2, cTblFld, ".")).
ASSIGN hF1dHndl:BUFFER-VALUE = cText.

RETURN TRUE.

END. /* METHOD PUBLIC dyn setc() */

/***/

/* Allow the setting of character type values. No error checking - assume */
/* the programmer has a clue. */
/***/

METHOD PUBLIC LOGICAL dyn seti (INPUT hQryHndl AS HANDLE,
INPUT cTblFld AS CHARACTER,
INPUT ival AS INTEGER) :

DEFINE VARIABLE hFl1dHndl AS HANDLE NO-UNDO.
DEFINE VARIABLE cValue AS CHARACTER NO-UNDO.

FIND ttDynToolKit EXCLUSIVE-LOCK
WHERE ttDynToolKit.QryHndl = hQryHndl
AND ttDynToolKit.TblName = ENTRY (1, cTblFld, ".").
IF NOT AVAILABLE ttDynToolKit THEN RETURN FALSE.
ASSIGN hFldHndl = ttDynToolKit.TblHndl:BUFFER-FIELD(ENTRY (2, cTblFld, ".")).
ASSIGN hF1dHndl:BUFFER-VALUE = iVal.

RETURN TRUE.

END. /* METHOD PUBLIC dyn setc() */

/***/

Page 100

/* Allow the setting of character type values. No error checking - assume */
/* the programmer has a clue. */
/*‘k****‘k‘k***‘k****‘k****‘k****‘k****‘k****‘k****‘k‘k***‘k****‘k*************************/

METHOD PUBLIC LOGICAL dyn setf (INPUT hQryHndl AS HANDLE,
INPUT cTblFld AS CHARACTER,
INPUT fVal AS DECIMAL):

DEFINE VARIABLE hFldHndl AS HANDLE NO-UNDO.
DEFINE VARIABLE cValue AS CHARACTER NO-UNDO.

FIND ttDynToolKit EXCLUSIVE-LOCK
WHERE ttDynToolKit.QryHndl = hQryHndl
AND ttDynToolKit.TblName = ENTRY (1, cTblFld, ".").
IF NOT AVAILABLE ttDynToolKit THEN RETURN FALSE.
ASSIGN hFldHndl = ttDynToolKit.TblHndl:BUFFER-FIELD (ENTRY (2, cTblFld, ".")).
ASSIGN hF1ldHndl:BUFFER-VALUE = fVal.
RETURN TRUE.

END. /* METHOD PUBLIC dyn setc() */

/*‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k************************/

/* Allow the setting of character type values. No error checking - assume */
/* the programmer has a clue. */
/***/

METHOD PUBLIC LOGICAL dyn setl (INPUT hQryHndl AS HANDLE,
INPUT cTblFld AS CHARACTER,
INPUT 1Val AS LOGICAL) :

DEFINE VARIABLE hF1ldHndl AS HANDLE NO-UNDO.
DEFINE VARIABLE cValue AS CHARACTER NO-UNDO.

FIND ttDynToolKit EXCLUSIVE-LOCK
WHERE ttDynToolKit.QryHndl = hQryHndl
AND ttDynToolKit.TblName = ENTRY (1, cTblFld, ".").
IF NOT AVAILABLE ttDynToolKit THEN RETURN FALSE.
ASSIGN hFldHndl = ttDynToolKit.TblHndl:BUFFER-FIELD (ENTRY (2, cTblFld, ".")).
ASSIGN hF1ldHndl:BUFFER-VALUE = 1lVal.

RETURN TRUE.

END. /* METHOD PUBLIC dyn setc() */

/***/

/* Allow the setting of character type values. No error checking - assume */
/* the programmer has a clue. */
/***/

Page 101

METHOD PUBLIC LOGICAL dyn setd (INPUT hQryHndl AS HANDLE,
INPUT cTblFld AS CHARACTER,
INPUT dval AS DATE) :

DEFINE VARIABLE hFldHndl AS HANDLE NO-UNDO.
DEFINE VARIABLE cValue AS CHARACTER NO-UNDO.

FIND ttDynToolKit EXCLUSIVE-LOCK
WHERE ttDynToolKit.QryHndl = hQryHndl
AND ttDynToolKit.TblName = ENTRY (1, cTblFld, ".").
IF NOT AVAILABLE ttDynToolKit THEN RETURN FALSE.
ASSIGN hFldHndl = ttDynToolKit.TblHndl:BUFFER-FIELD (ENTRY (2, cTblFld, ".")).
ASSIGN hF1dHndl:BUFFER-VALUE = dval.
RETURN TRUE.

END. /* METHOD PUBLIC dyn setc() */

END. /* CLASS */

In order for the tool to work, it also makes use of this procedure"”
dyn findinschema.p:

/***/

/* ONLY CALL THIS PROGRAM FROM dyntoolkit.i WHICH CREATES THE ALIAS */
/* TEMPDB. */
/* ONLY CALL THIS PROGRAM FROM DynToolKit.cls WHICH CREATES THE ALIAS */
/* TEMPDB. */
/* SGA: Donated by Dayne May daynem @ linx.com.au */
/* How to compile this. */
/* Connect to a DB with -1d tempdb (Any DB should do) */
/* Compile and save r-code */

/***/

DEFINE VARIABLE RCS AS CHARACTER INIT "S$Id: dynifindinschema.p,v 1.3 2006/10/20
05:01:44 sauge Exp sauge $" NO-UNDO.

DEFINE INPUT PARAMETER pcTable AS CHARACTER.
DEFINE OUTPUT PARAMETER plOK AS LOGICAL.

FIND FIRST tempdb. file
WHERE tempdb. file. file-name = pcTable
NO-LOCK NO-ERROR.

ASSIGN plOK = AVAILABLE tempdb. file.

13 There is a revised version of this code found in the appendix. It is less logical database name
oriented for compilation.

Page 102

Using the class is quite simple. Initialize a variable of type DynToolKit to hold the
class handle.

There are a couple of properties of interest — UseMultiDBs which is a logical of
whether the class is being used on one or more databases. If you are using multiple
databases — there is no choice — it must be YES/TRUE. If not, then there is a choice,
it's just that the algorithm will have a few more steps in it to handle potential multiple
databases than required.

Some databases can be connected as a name for the data servers for non-Progress
databases. There are connections that you may want to skip the name of and use the
schema holder name for that database. This is the purpose of the ITgnoreDBNames
property.

Next one uses the dyn _open () method to start the query. One simply puts in a query

like one would for any dynamic query. The class will take care of determining the
buffers needed, etc.

The dyn open () method will return a handle for use on other methods in the class.
The class can actually handle multiple queries so you do not need an object per query.
This is an example where the class can be re-used without re-instancing. Since the
functionality is so basic, it was determined this would be the right way to go.

There are a couple of other properties that will alert if there is a problem:
cDyn ErrCode and cDyn ErrMsg. One can check the values to determine if
the query has a problem and what kind it is.

To actually reach the data, one can use the navigation methods of dyn first (),
dyn next (), dyn prev (), and dyn last () to navigate in the query's result
set.

To pull the data out, one can use dyn getvalue () method or one of it's type
specific cousins.

Finally use dyn close () to close the query and free up the associated dynamically
created elements.

Reading the code above, I am sure you will discover quite a bit more functionality
available in the class.

Page 103

DEFINE VARIABLE h AS HANDLE NO-UNDO.
DEFINE VARIABLE DynToolKit AS CLASS DynToolKit NO-UNDO.

DynToolKit = new DynToolKit ().

/**/

/* Test One : A good query in DB 1 */

/**/

DynToolKit:UseMultiDBs = YES.
DynToolKit:IgnoreDBNames = "oracle".

ASSIGN h = DynToolKit:dyn open ("FOR EACH Customer NO-LOCK where
Customer.CustomerID = 251").

DISPLAY DynToolKit:cDyn ErrCode DynToolKit:cDyn ErrMsg FORMAT "x(30)".
DISPLAY h:NUM-RESULTS COLUMN-LABEL "NumResults".
REPEAT:

DynToolKit:dyn next (h).
IF DynToolKit:dyn goe(h) THEN LEAVE.

DISPLAY DynToolKit:dyn getvalue (h, "Customer.Name")
DynToolKit:dyn getvalue(h, "Customer.CreditLimit")
DynToolKit:dyn getvalue (h, "Customer.IsActive")
DynToolKit:dyn getvalue (h, "Customer.Phone").

END.

DynToolKit:dyn close(h).

Page 104

Iterating Collection Object

One of the nicest uses of classes is the ability for them to provide a structure for
scrolling data. If you are a GUI programmer, a browser can do things nicely — but if
you are a web programmer (either HTML, AJAX, or Web Services interfaces) you
can't conveniently use such a thing. If you are an old timer, you will remember the
many attempts at an include file that would magically create a browse based on
scrolling frame and an editing-loop. and other fun toys in the language like that.

This is something where OOP really stands out as this iteration data structure is clear
and concise in it's use and implementation.

The class provides methods to collate information into one string. This string goes
into a scratch table in the database and the data is named with a DataSetName so on
multiple uses it can be found again'®.

Then one merely sets the paging size parameter sent to the constructor and the class
will automatically chop up pages for you for use with the Nextpage (), PrevPage ()
and other iterating based methods on the data set.

Read the class code below for some additional functionality available and the example
use of the code following the listing.

class scroller:

define public variable DataSetName as character no-undo.
define public variable Pagelength as integer no-undo.
define public variable CurrentPage as integer no-undo.

define temp-table DataRetrieved
field RowNumber as integer
field Data as character.

/* Get 142 errors if not private buffer */
define buffer gScratch for Scratch.

/***/

14 For example, if you are programming with a web interface or a state-less connection, the data set
name would be placed into a session data structure so it can be referenced again on sub-sequent
hits on the web app.

Page 105

constructor public scroller (input DataName as character,
input Pagelen as integer) :

define variable S as class strings no-undo.

if DataName = ? then do:
S = new strings{() .
DataName = S:MakeID3(20).
delete object S.

end. /* if DataName = ? */
DataSetName = DataName.
PageLength = Pagelen.
CurrentPage = 1.

end. /* constructor */
/***/
method public void ClearData():

for each scratch no-lock
where scratch.dataname = DataSetName:

delete Scratch.
end. /* for each */
end. /* method */
/***/
method public integer NumberOfPages|() :
define variable NumberOfPages as decimal.
NumberOfPages = NumberOfRows () / PageLength.

if integer (NumberOfPages) < NumberOfPages then
NumberOfPages = NumberOfPages + 1.

return integer (NumberOfPages) .

end. /* method */

/***/

method private integer NumberOfRows () :

Page 106

define variable Counter as integer init 0 no-undo.

for each scratch no-lock
where scratch.dataname = DataSetName:

Counter = Counter + 1.

end. /* for each */

return Counter.
end. /* method */
/***/
method public logical IsNextPage() :

return CurrentPage < NumberOfPages() .
end. /* method */
/*****k**k‘k*k***************k*k*k*k‘k*k**/
method public logical IsPrevPage():

return CurrentPage > 1.
end. /* method */
/***/
method public logical GetPageData (output table DataRetrieved) :

define variable CurrentRow as integer init 1 no-undo.
define variable OffSetRow as integer no-undo.

1f NumberOfRows () = 0 then return false.

empty temp-table DataRetrieved.

OffSetRow = max(l, (CurrentPage - 1) * Pagelength).

if CurrentPage > 1 then OffSetRow = OffSetRow + 1. /* Math dealing
with 0 */

do while CurrentRow <= Pagelength:

find gScratch no-lock
where gScratch.Kl = string (OffSetRow)

Page 107

and gScratch.DataName = DataSetName
no-error.

if not available gScratch then leave.
create DataRetrieved.

DataRetrieved.RowNumber = CurrentRow.
DataRetrieved.Data = gScratch.Datal.

OffSetRow = OffSetRow + 1.
CurrentRow = CurrentRow + 1.
end. /* do */
return true.
end. /* method */
/*****************~k~k~k~k~k***********************k*k*k************************/
method public void NextPage() :
CurrentPage = min (CurrentPage + 1, NumberOfPages()) .
end. /* method */
/***********‘k‘k*******************‘k*‘k***‘k********************************/
method public void PrevPage () :
CurrentPage = max (CurrentPage - 1, 1).
end. /* method */
/***/
method public void FirstPage() :
CurrentPage = 1.
end. /* method */
/***/
method public void LastPage() :

CurrentPage = NumberOfPages () .

Page 108

end. /* method */
/***/
method public void AddRow (input RowData as character):

create gScratch.

gScratch.Kl = string (NumberOfRows () + 1).

gScratch.Datal = RowData.

gScratch.DataName = DataSetName.

gScratch.CreateDate = TODAY.

gScratch.CreateTime = TIME.

gScratch.StructureName = "scroller.cls".

end. /* method */

end. /* class */

The scratch table for the database can be found in the appendix of this book.
Here is an example use.

First we clear out the entire database table. Really one should use clearpata () but
that is for use of a named set of entries. The testing code likes to start with a clear
table.

Next we define a temp table that matches the temp-table definition within the object.
This is a breaking of the rules regarding encapsulation. 1 think this is one of those
few cases where it can be allowed. Why? It is very very unlikely the structure will
change since it is designed to handle a dynamic structure of data within it.

We instantiate an object from the class and start feeding it data to work with.

From there we start navigating around in the collection of data with the navigation
methods in a manner like a browser.

Then we delete the data. Note that deleting the object DOES NOT delete the data.
This would be useless if on a stateless connection we once again needed that data.

for each scratch exclusive-lock: delete scratch. end.

Page 109

define variable S as class scroller no-undo.
define variable i1 as integer no-undo.

define temp-table DataRetrieved
field RowNumber as integer
field Data as character.

S = new scroller(?, 10).

do i =1 to 45:
S:AddRow ("Test Row " + string (i)).
end.

S:FirstPage ().
display S:NumberOfPages() .

display "----".

S:GetPageData (output table DataRetrieved).

for each DataRetrieved:

display DataRetrieved.RowNumber DataRetrieved.Data
end.

display "----".

S:NextPage () .

S:GetPageData (output table DataRetrieved).

for each DataRetrieved:

display DataRetrieved.RowNumber DataRetrieved.Data
end.

display "----".

S:NextPage () .

S:GetPageData (output table DataRetrieved).

for each DataRetrieved:

display DataRetrieved.RowNumber DataRetrieved.Data
end.

display "----".

S:NextPage () .

S:GetPageData (output table DataRetrieved).

for each DataRetrieved:

display DataRetrieved.RowNumber DataRetrieved.Data
end.

display "----".
S:NextPage () .

Page 110

format

format

format

format

"X(40) "

"X(40) "

"X(40) ",

"X(40) ",

S:GetPageData (output table DataRetrieved).

for each DataRetrieved:

display DataRetrieved.RowNumber DataRetrieved.Data format "x (40)".
end.

display "----".

S:PrevPage () .

S:GetPageData (output table DataRetrieved).

for each DataRetrieved:

display DataRetrieved.RowNumber DataRetrieved.Data format "x(40)".
end.

display "Last Page ----".

S:LastPage () .

S:GetPageData (output table DataRetrieved).

for each DataRetrieved:

display DataRetrieved.RowNumber DataRetrieved.Data format "x(40)".
end.

delete object S.

This is a very basic iterator. By making some changes, one can actually serialize the
data and make this a generic scroller for all types of information beyond a string.

In addition, hopefully you can see how the data can be fed out in XML/HTML for
AJAX use as well as traditional page programming with a hyper link detailing the
action being NextPage () or PrevPage (). All one needs to do is remember two

pieces of information either in the client or in the web session table: DataSetName and
CurrentPageNumber.

(Remember not to repopulate the table after the first time unless you need to reset the
data — otherwise you are doing work already done. The purpose of the
DataSetHandle is to remember populations from selecting and joining data out one
or more tables.)

Page 111

Writing and Deleting From The Database

One of the basic sub-systems in almost any application is the ability to adjust
parameters of operation. These might be log levels, where logs are stored, email
addresses, snippets of HTML, etc.

Below is a simple class that interacts with a database table called sysParameter in
read, write, delete, and update manner. As you read the code, you will see that one
interacts with the database just as any other body of ABL code using the usual
database manipulation statements.

Objects used in this manner act exactly like subroutines or blocks of code in the ABL.

class ParameterMngr:

define public variable SystemEnvironment as character no-undo.

/***/

/* Some parameters might be different based on the environment the app */
/* 1s running under (like dev, test, or production.) We use a var to */

/* to help identify the proper parameter for the given environment. */
/*********~k***/

constructor public ParameterMngr () :

SystemEnvironment = OS-GETENV ("APPLICATION ENVIRONMENT") .
end. /* constructor */
/‘k******************‘k‘k‘k*************************‘k*************‘k*********/

/* Unused. * /

/***/

destructor public ParameterMngr () :

end. /* destructor */

/***/

/* Create and update a parameter. If the ParmComment is ? no change is */

/* made to the comment. */
/***/

method public logical SetParameterValue (input ParmName as character,
input ParmValue as character,

Page 112

input ParmComment as character):
find SysParameter exclusive-lock
where SysParameter.ParameterName = ParmName
no-error.

if not available SysParameter then do:

create SysParameter.
SysParameter.ParameterName = ParmName.

end. /* if not available SysParameter */
SysParameter.Data = ParmValue.
/* Don't overwrite any comments that might be there already */

if ParmComment <> ? then SysParameter.Comment = ParmComment.

end. /* SetParameterValue */
/‘k‘k**k“k‘k‘k‘k‘k****‘k‘k‘k****‘k‘k**k“k‘k*k‘k‘k**k*k*‘k‘k*****‘k‘k****‘k******‘k‘k*****‘k‘k**k“k‘k‘k‘k‘k**/

/* Provide the value to a given parameter. */
/***/

method public character GetParameterValue (input ParmName as character):
find SysParameter no-lock
where SysParameter.ParameterName = ParmName
no-error.
if not available SysParameter then return ?.
return SysParameter.Data.

end. /* GetParameterValue */

/‘k‘k***********‘k****‘k*‘k*****************‘k*******k*k*k**k*********************/

/* Provide the comment to a named parameter. */
/**************************************k*k*k*******************************/

method public character GetParameterComment
(input ParmName as character):

find SysParameter no-lock

where SysParameter.ParameterName = ParmName
no-error.

Page 113

if not available SysParameter then return ?.
return SysParameter.Comment.

end. /* GetParameterComment */

/***/

/* Delete a given parameter name. */
/***/

method public logical DeleteParameter (input ParmName as character):

find SysParameter exclusive-lock
where SysParameter.ParameterName = ParmName
no—-error.

if not available SysParameter then return false.
delete SysParameter.
return true.

end. /* DeleteParameter */

end. /* class */

As you read the code, you may have thought to yourself this is a candidate for use
with static methods. Depending on it's use — it very well might be.

Some very simple examples of it's use. One of the common questions is if “I define
the class reference as a no-undo variable — does that mean the database actions are no-
undo?” The answer to that 1s “No. The database interactions are not undone unless
the use of the class 1s done in a block of code that undoes database transactions.

define variable ParmMngr as class ParameterMngr no-undo.

ParmMngr = new ParameterMngr () .

ParmMngr:SetParameterValue (Y“amduus.html.home.company”,
“Amduus Information Works, Inc.”,
“Web App Home Page Welcome”) .

display GetParameterValue (“amduus.html.home.company”) .

delete object ParmMngr.

One of the more interesting things that can be done with parameters is making them
specific to a customer used within the system. This often happens in web applications
for user personalization and or customer organization personalization.

Page 114

Set up the names to use custom.parameter... formatting and with some
modification of the GetParametervalue () method one can “drop down” along the
parameter for those that are global to the user, the customer, or the system. For
example, a user with an id of k6453 might have k6543.html1.pagecolor while the
default should the user not customized their set up is html.pagecolor.

Remembering that we can add values to objects without being dependent on parameter
arguments, we could easily add a property/public variable called workingUser1D that
is set when the object is created. Perhaps one might even want a
WorkingCustomerCompany property/public variable for SaaS apps sharing databases
amongst different customers.

Page 115

Interacting With The Database With Your Own Commit

One of the things we know about objects is the ability to encapsulate data. Can one
encapsulate transactions?

The answer — to a degree — is yes. When the implementing developer using the object
uses the set* () and Get* () methods to manipulate data on the object — these do not
need to be on the database record buffer it's self but a temp-table defined as like the
database record.

When the object is constructed or use of a FindBy* () method is called — this temp-
table can be buffer-copy to from the database records by the object.

When the implementing code calls the objects commit () method — the temp-table can
be validated and if good, is buffer-copy to the database record. Even better, when the
Rollback () method is called — one can simply forget all about the changes made on
the temp-table record.

Of course, if you commit () then roll backing of the database change will need to be
done with the ABL statement unDO.

Here is a small example program'® using this technique.

/* Warning: This is generated code. */
class DiscussionManager:

define temp-table TheRecord like Discussion.

define buffer WorkingDiscussion for Discussion.

define private variable IsNew as logical no-undo.
define private variable ErrorCode as character no-undo.

/***/

/* Constructor */
/***/

constructor public DiscussionManager () :

end. /* constructor */

15 T have a program that will generate most of the code to make an object specific to a table. Contact
me if you wish to have a copy of it.

Page 116

/***/

/* Destructor */
/***/

destructor public DiscussionManager () :

end. /* destructor */

/***/

/* Commit changes */
/***/

method public logical Commit () :
if IsNew then create WorkingDiscussion.
buffer-copy TheRecord to WorkingDiscussion.
ReleaseToOthers () .

end. /* method */

/***/

/* Release changes */
/***/

method public logical ReleaseToOthers():
release WorkingDiscussion.

end. /* method */

/***/

/* Rollback changes */
/* A RollBack() after a Commit () is pretty much useless. Use UNDO. */

/***/

method public logical RollBack():

Page 117

empty temp-table TheRecord.
IsNew = false.

ReleaseToOthers() .

end. /* method */

/***/

/* Set/Get for CreateDate */

/***/

method public void SetCreatedate (input TheValue as date):
SetError ("000") .
/* Ensure the record is available from a FindBy method */
if not available TheRecord then do:

SetError ("001") .
return.

end. /* if */
/* All is OK. Set the value. */
TheRecord.Createdate = TheValue.

end. /* SetCreateDate */

method public date GetCreatedate():
SetError ("000") .
/* Ensure the record is available from a FindBy method */
if not available TheRecord then do:

SetError ("001") .
return 7.

end. /* if */

/* All is OK. Return the value. */

Page 118

return TheRecord.Createdate.
end. /* GetCreateDate */

/***/

/* Set/Get for CreateTime */

/***/
method public void SetCreatetime (input TheValue as integer) :

SetError ("000") .

/* Ensure the record is available from a FindBy method */

if not available TheRecord then do:

SetError ("001") .
return.

end. /* if */
/* All is OK. Set the value. */
TheRecord.Createtime = TheValue.

end. /* SetCreateTime */

method public integer GetCreatetime() :
SetError ("000") .
/* Ensure the record is available from a FindBy method */
if not available TheRecord then do:

SetError ("001") .
return ?.

end. /* if */
/* All is OK. Return the value. */
return TheRecord.Createtime.

end. /* GetCreateTime */

Page 119

/***/

/* Set/Get for DiscussionID */

/***/

method public void SetDiscussionid (input TheValue as character):
SetError ("000") .
/* Ensure the record is available from a FindBy method */
if not available TheRecord then do:

SetError ("001") .
return.

end. /* if */
/* All is OK. Set the value. */
TheRecord.Discussionid = TheValue.

end. /* SetDiscussionID */

method public character GetDiscussionid():
SetError ("000") .
/* Ensure the record is available from a FindBy method */
if not available TheRecord then do:

SetError ("001") .
return 2.

end. /* if */
/* All is OK. Return the value. */
return TheRecord.Discussionid.

end. /* GetDiscussionID */

/***/

/* Set/Get for FromIMUserID */

/***/

Page 120

method public void SetFromimuserid (input TheValue as character):
SetError ("000") .
/* Ensure the record is available from a FindBy method */
if not available TheRecord then do:

SetError ("001") .
return.

end. /* if */
/* All is OK. Set the value. */
TheRecord.Fromimuserid = TheValue.

end. /* SetFromIMUserID */

method public character GetFromimuserid() :
SetError ("000") .
/* Ensure the record is available from a FindBy method */
if not available TheRecord then do:

SetError ("001") .
return 2.

end. /* if */
/* All is OK. Return the value. */
return TheRecord.Fromimuserid.

end. /* GetFromIMUserID */

/***‘k*k*k*k‘k***/

/* Set/Get for MessageText */

/**k*k**k‘k*k**********************/

method public void SetMessagetext (input TheValue as character):
SetError ("000") .

/* Ensure the record is available from a FindBy method */

Page 121

if not available TheRecord then do:

SetError ("001") .
return.

end. /* if */
/* All is OK. Set the value. */
TheRecord.Messagetext = TheValue.

end. /* SetMessageText */

method public character GetMessagetext () :
SetError ("000") .
/* Ensure the record is available from a FindBy method */
if not available TheRecord then do:

SetError ("001") .
return 7.

end. /* if */
/* All is OK. Return the value. */
return TheRecord.Messagetext.

end. /* GetMessageText */

/***/

/* Set/Get for RoomID */

/***/

method public void SetRoomid (input TheValue as character):
SetError ("000") .
/* Ensure the record is available from a FindBy method */
if not available TheRecord then do:

SetError ("001") .
return.

Page 122

end. /* if */
/* All is OK. Set the value. */
TheRecord.Roomid = TheValue.

end. /* SetRoomID */

method public character GetRoomid() :
SetError ("000") .
/* Ensure the record is available from a FindBy method */
if not available TheRecord then do:

SetError ("001") .
return ?.

end. /* if */
/* All is OK. Return the value. */
return TheRecord.Roomid.

end. /* GetRoomID */

/***/

/* Set/Get for ToIMUserID */

/***/

method public void SetToimuserid(input TheValue as character):
SetError ("000") .
/* Ensure the record is available from a FindBy method */
if not available TheRecord then do:

SetError ("001") .
return.

end. /* if */

/* All is OK. Set the value. */

Page 123

TheRecord.Toimuserid = TheValue.

end. /* SetToIMUserID */

method public character GetToimuserid() :
SetError ("000") .
/* Ensure the record is available from a FindBy method */
if not available TheRecord then do:

SetError ("001") .
return 2.

end. /* if */
/* All is OK. Return the value. */
return TheRecord.Toimuserid.

end. /* GetToIMUserID */

/***/

/* Provide a means to query any errors occurred. */
/***/

method public character GetError():
return ErrorCode.
end. /* GetError */

/***/

/* Provide a means to set the error code and message. */
/***/

method private character SetError (input ErrorNumber as character):
case ErrorNumber:

when "000" then ErrorCode = ErrorNumber + ":No Error".
when "001" then ErrorCode = ErrorNumber + ":No Record".

end. /* case */

Page 124

end. /* SetError */

/***/

/* Provide a means to reset the error code and message. */
/***/

method private void ResetError():
SetError ("000") .

end. /* ResetError */

/***/

/* Provide a FindBy* () to update a record with or to query values by. */
/***/

method public logical FindByDiscussionid
(

input Discussionid as character

)t

find WorkingDiscussion no-lock
where WorkingDiscussion.Discussionid = Discussionid
no—-error.

if available WorkingDiscussion then do:

IsNew = false.

create TheRecord.

buffer-copy WorkingDiscussion to TheRecord.
end. /* if available */

return available WorkingDiscussion .

end. /* method */

/***/

/* Provide a FindBy* () to update a record with or to query values by. */
/***/

method public logical
FindByRoomidFromimuseridToimuseridCreatedateCreatetime

(

input Roomid as character,

Page 125

input
input
input
input

) :

Fromimuserid as character,
Toimuserid as character,
Createdate as date,
Createtime as integer

find WorkingDiscussion no-lock
WorkingDiscussion.Roomid = Roomid

where
and
and
and
and

WorkingDiscussion.Fromimuserid
WorkingDiscussion.Toimuserid =
WorkingDiscussion.Createdate =
WorkingDiscussion.Createtime =

no—error.

= Fromimuserid
Toimuserid
Createdate
Createtime

if available WorkingDiscussion then do:
IsNew = false.
create TheRecord.
buffer-copy WorkingDiscussion to TheRecord.

end. /* if available */

return available WorkingDiscussion

end. /*

method */

/***/

/* After using a FindBy* ()

and want to update - use this.

*/

/***/

method public logical LockRecord ():

SetError ("000") .

/* Ensure the record is available from a FindBy method */

if not available WorkingDiscussion then do:

SetError ("001") .
return false.

end. /* if */

find current WorkingDiscussion exclusive-lock no-error.

return available WorkingDiscussion.

end. /* method */

Page 126

/***/

/* Provide a means to create a new record with. */
/‘k‘k****‘k‘k******‘k****‘k‘k‘k****‘k‘k******‘k*****‘k‘k*****‘k*****‘k‘k*****‘k‘k****‘k‘k***/

method public logical CreateRecord():
create TheRecord.

IsNew = true.
return available TheRecord.

end. /* method */

end. /* class */

Here is a small test program to give an idea how to use the object as generated.

define variable N as class DiscussionManager no-undo.

N

N:
N:
N:

N:
N:
N:

= new DiscussionManager () .
CreateRecord() .

SetRoomID ("Test") .
Commit () .

CreateRecord() .

SetRoomID ("Test2") .
Rollback () .

delete object N.

With this basic structure you can add additional tables, methods, validations, error
handling, and other object interactions as you need. Often, a set of three or four tables
make up some like collection of data. Creating an object that handles the interactions
on those tables often works nicely so the implementing programmer need not
understand the tables “magic” numbers, key fields, etc.

Page 127

MORE ADVANCED SUBJECTS

There are going to be times when you do not know what kind
of object you will need at run time. Just as Progress provides
the RUN VALUE () construct for it's procedural
methodology, the object oriented programming methodology
has something similar.

Page 128

The Concept of a Factory

There are times when you are going to need to dynamically instantiate an object but at
run-time you won't know which class it will be of. Think of it as a run
value (myprogram) type of technique.

This is the purpose of a factory.

In order to start, you will need to create an interface — that is, a definition of what
methods the classes you might use must provide.

Object
Interface
methodA
methodB I p——y |
methodC Implementing
— methodC Code
<>
Data

Object

An interface can help code use any

object with the same method names
methodA and signatures as well public/protected
methodC Variables.

Note how the top object has another method
but those methods in common can be used
through the interface by the implementing
code.

>
Data
Here is an example made up strictly of methods. One can include protected temp

Page 129

tables and variables/properties in the definition too.

interface Iterator:

method public void GoNext ().
method public void GoPrev ().
method public void GoFirst().
method public void GoLast() .
method public integer CountOf ().
method public logical IsEmpty() .

end.

Next, you need a set of objects that provide these pieces of functionality. Here we
make use of an object that will walk through the table in the Vector object.

Finally, you create a factory object. Note the big magic is in the Generate () method.
Note how it's class is Tterator which isn't really a class definition but an interface to
a class we defined above. Any class can be returned long enough it has those
methods (and their signatures) as part of it's definition.

/* This is a bit like the run value(program) idea in the proc- */

/* dural use of the language. This shows how to instance an */
/* object holder defined by an interface (Iterator.cls) with */
/* different types of objects that will guarantee those */
/* methods are available to it. */

class IteratorFactory:
/* We might want to tell the user if something went wrong. */
define public variable ErrorMessage as character init "Ready" no-undo.

/* Each time you call this, you will be generating a new instance */
/* so be careful about cleaning up with delete object statements. */

method public class Iterator Generate (input TypeOfObject as character):
/* Create a handle for each type of Iterator we might send back */
define variable N as class VectorIterator no-undo.
ResetErrorMessage () .

/* Decide the iterator type, instance, and return it's handle */

Page 130

/* to be used by the invoker of the class. */
case TypeOfObject:

when "Vector" then do:

ErrorMessage = "Created VectorIterator".
N = new VectorIterator().
return N.

end. /* when */
otherwise do:

ErrorMessage = "I don't know what to do!".
return 2.

end. /* otherwise */

end. /* case */

end. /* method */

method private void ResetErrorMessage () :
ErrorMessage = "Ready".

end. /* method */

method public character GetErrorMessage():
return ErrorMessage.

end. /* method */

end. /* class */

Here is an example use of the factory object. Note we use two different variables to
hold each instance (N and N1) because since they are dynamically created they will
need to be dynamically deleted.

define variable N as class Iterator no-undo.
define variable N1 as class Iterator no-undo.
define variable F as class IteratorFactory no-undo.

F = new IteratorFactory() .

Page 131

display F:GetErrorMessage () .

N = F:Generate ("Vector").
display F:GetErrorMessage () .

N1 = F:Generate("Hash").
display F:GetErrorMessage () .

N:GoFirst () .
delete object F.

delete object N.
delete object N1.

The point plainly made, is that if you have an interface definition that matches all of
some of the definition of any class in terms of methods and data, one can dynamically
create any of those classes and refer to it with the interface.

Page 132

Dynamic Creation Of Objects With Dynamic-New
Note: This section requires the use of Progress 10.1c or better.

This is a slight variant on the factory idea that is built into the language. One sets up a
character variable with the name of the class you wish to instance and give it to a
reference that can handle that instance.

For some control, you may want to do a search() of sorts on the class name
(remember it might be prefixed with path.to.class and postfixed with .c1s) to
make sure such a beast actually exists.

The example above with the factory does some work on handling unexpected classes
where this will use the Progress error system.

A benefit of this method is for example specific objects being created for a specific
customer. (This is common in SaaS thinking.) For example, one may have a class
named salesOrder.cls. This would be the super-class all the customer specific sub-
classes would inherit from. So it could be:

ClassName = SourcePrefix (CurrentCustomerID) + “SalesOrder”.

Then one can dynamically create the class to use based on what customer is being
used. (SourcePrefix might return a prefix or a “”’ based on a table of entries.)

Here is an example of using dynamic-new and how it works when not using an
interface to abstract with. In this case, the hierarchy becomes more important when
trying to create a class and the class variable used.

This is why OOP has the mantra Always Program To The Interface.

Using an interface is so much easier than trying to keep track of inheritances and
which classes have which methods available when dynamically mixing and matching
classes.

But, lets go down that path anyhow.

The variable Theclass holds the actual class name (not it's .cls file name.) But we
plan on putting the B instance into a variable of class A. What happens can be of
interest.

Page 133

define variable T as class A no-undo.

define variable TheClass as character no-undo.
TheClass = "B".

T = dynamic-new TheClass ().

display T:FireThis () format "x(40)".

delete object T.

In this example, the classes are defined as so:

class A:

method public character FireThis():
return "A is firing".

end.

end.

Here is B which over-rides the FireThis () method from A with it's own.

class B inherits A:

method public character FireThisB() :
return "B is firing".

end.

method public override character FireThis():
return "B is firing".

end.

end.
When executed, one gets:
B is firing

This is because B has a method of the same signature as in A, one can dynamically
create B and use those methods (common to A.)

If one tries to use a method in B (such as FireThisB ()) while using an A reference
type, it says A doesn't know what to make of it. This makes sense.

Page 134

Hence, one can hold an object reference of any derived classes (sub-class) in a
reference to a base class (super-class) dynamically. Just don't expect to be able to use
any methods not found in the base (super) class.

Lets switch things around, ie using a derived reference to use a base class. Here we
will use a sub-class to hold a reference to a super class.

define variable T as class B no-undo.

define variable TheClass as character no-undo.

TheClass = "A".

T = dynamic-new TheClass ().

display T:FireThis () format "x(40)".

delete object T.

Gives ya:

A is firing

Hopefully this isn't a big surprise because the instance is an A class and not a B class.
We just happen to hold an A in a B which is allowed because B is inherited from an A.
Everything in A is guaranteed to be available in the B.

So basically if you plan on creating a dynamic object with a reference familiar with all
the possible inherited objects, one can dynamically create any one of those inherited
objects and use the top-most derived reference to reach into there.

To be safe, if you have C + B < A where A is the top most superclass and you plan
on putting a reference to an A or B or C into some object reference variable — make the
type of that variable a C (the farthest sub-class.)

So, just to be clear. Above, we are using a B reference to play with an A instance and
so A's methods are what are firing.

Below, we are using a B to make a B, and so B's methods are what are firing.

define variable T as class B no-undo.

define variable TheClass as character no-undo.
TheClass = "B".

T = dynamic-new TheClass ().

display T:FireThis() format "x(40)".

delete object T.

Page 135

Flipping Object's Class Types With Dynamic-Cast

In the previous section, we saw a lot of using a super-class or a sub-class object
reference type used with an instance of the object along it's inheritance path.

Now the question is — I have this object reference so how do I flip it from an instance
of a sub-class into an instance of a super-class?

Or — I have this instance of a class tucked away into the reference handle of a super
class and I want to get back to my “real” class. (This happens a lot on temp-tables
where a field is of type Progress.Lang.Object.)

This is where the dynamic-cast function comes in handy.

Take for example this most likely used scenario. There are a bunch of objects created
and stored in a temp-table.
define temp-table SalesLinesOfOrder

field ObjRef as Progress.Lang.Object!®
field ObjType as character.

And we have some code that creates some objects on the fly — perhaps used in Sales
Order Lines — and stores them into the temp-table.

for each SalesOrderLine of SalesOrder no-lock:

create SalesLinesOfOrder.

SalesLinesOfOrder.ObjRef = new SaleslLines (SalesOrder.OrderNumber,
SalesOrderLine.LineNumber
) -

SalesLinesOfOrder.ObjType = “SalesLines”.

end.

Now (usually in some other program) we actually want to go and use a method on
those objects. But wait — the objects are at a reference which is the lowest of the low
super-class (Progress.Lang.0Object). These references have no idea what these
instances are capable of doing.

Hence, we need to cast them to the right class and then make use of their methods.

16 Progress.Lang.Object can store any object of any class the user might create. This way you do not
need to set the field to a specific type. We store the specific type in ObjType for use later on.

Page 136

define variable SalesLine as class SalesLines no-undo.
for each SalesLinesOfOrder no-lock:

SalesLine= dynamic-cast (SalesLinesOfOrder.ObjRef,
SalesLinesOfoRder.ObjType
) -

SalesLine:ComputeTax () .

SalesLine:Commit () .

end.

There is a weakness in the language where one cannot dynamically cast and use the
results directly. So while it might be nice to do:

dynamic-cast (SalesLinesOfOrder.ObjRef,
SalesLinesOfoRder.0ObjType) :ComputeTaxes ()

One cannot do so. Hopefully in a future version they will allow this to happen.

Page 137

Error Handling

There are three ways of handling errors. One is your own error handling object, which
will be discussed here.

The other is the Progress supplied error handling techniques which are discussed in
their book “Error Handling” found with their product documentation (version 10.1c).
The book reviews the legacy error handling methodology as well the new
Progress.Lang.* objects available for error handling — as well caTcH/FINAL
processing. It is very interesting reading, available for free, and I recommend taking a
look at it.

The third way is having the error routines in your class which were exampled in
previous discussions. Sometimes you want this — sometimes you don't. Sometimes
you will use an error collection object to collect errors from the various classes you
end up using.

If you find there can be one or multiple errors that you need to record at a time, you
will want to create your own error handling sub-system. Examples of such
subsystems include web services or web pages. One doesn't want the user to jump
through multiple iterations on a web page or multiple soap faults on a web service to
handle errors when all the errors can be collected sent back to the user in a convenient
manner.

What we want our sub system to do is 1) Record multiple errors. 2) Not undo any
errors that are recorded. 3) Provide a means of reading each error out to an
implementing program. 4) Provide a means to match an error number to an error
message.

To achieve this we will inherit a Progress.Lang.AppError class and add to it with
errors oriented methods.

First we are going to make the error to message conversion database oriented. This
way different languages can be used for the errors or the errors can be customized by
the user. To do this, we place the errors into the syspParameter table that is used by
the ParameterMngr class:

create SysParameter.

SysParameter.ParameterName = "error.1l0".
SysParameter.Data = "No Invoice".

Page 138

SysParameter.Comment = "Wrong Invoice Number".
create SysParameter.
SysParameter.ParameterName = "error.20".

SysParameter.Data = "No Customer".
SysParameter.Comment = "Wrong Customer Number".

Next here i1s the ErrorCollection class we can use to collect a bunch of errors:

class ErrorCollection inherits Progress.Lang.AppError:
define private variable ParmMngr as class ParameterMngr no-undo.
constructor ErrorCollection (input ipErrNumber as character):
ParmMngr = new ParameterMngr () .
/* Calling our over-ridden AddMessage below */
AddMessage (ipErrNumber) .
end. /* constructor */
constructor ErrorCollection ():
ParmMngr = new ParameterMngr () .
end. /* constructor */
destructor ErrorCollection():
delete object ParmMngr.

end. /* destructor */

/**/

/* Over-ride the Progress.Lang.AppError AddMessage () method */

/* with ours. */
/* Because the super-class expects an integer - our error */
/* numbers must be integer. */

/**/
method public logical AddMessage (input ipErrNumber as character):
/* Running AddMessage () in Progress.Lang.AppError */
super:AddMessage (ParmMngr:GetParameterValue ("error." + ipErrNumber),

integer (ipErrNumber)) .

Page 139

end. /* method */
end. /* class */
The program above looks pretty short and appears to be missing things like the
number of messages stored and a means to reach the messages stored. But because we
are inheriting from the Progress.Lang.AppError class, that code has already been

written for us! We are re-using that code — specifically the NumMessages property and
the GetMessage () method which are a part of the inherited class'’.

Lets see how easy it is to use:

define variable H as class ErrorCollection no-undo.
H = new ErrorCollection().

H:AddMessage ("10").
H:AddMessage ("20").

display H:NumMessages.
display H:GetMessage (1) .
display H:GetMessage (2).

delete object H.

Pretty simple eh?

17 Actually — some of these are inherited from Progress.Lang. AppError from it's inherited class
Progress.Lang.ProError.

Page 140

OBgiecT DESIGN PRINCIPLES

There is a lot of theory out there for designing of objects that
sometimes gets a little abstract. (The whole idea of course.)

But this section looks at some common questions you will
want to consider with your object designs.

Page 141

The philosophical difference

The main difference between object oriented programming and procedural coding is a
switch in perspective. Procedural coding tends to be more verb — noun. That is, some
activity (verb) made upon data (noun). OOP tends to be completely the opposite:
noun - verb. There is this thing (noun) that one asks to provide some sort of activity
(verb).

This may seem subtle but allows for a much more domain knowledge oriented
analysis of what should be coded.

In OOP — one focuses on the entity — the what or the who. Common in programming
is a collection of users. One can create a manager — a who — that does certain things
with users.

A sales order — a what - is common in any business and with an object. One asks it to
not only know about the sales order's data — but it will also provide actions one does
on the sales order. Think of the object as a person who does knows the data and
provides actions on the data with other parts of the system.

Objects Lend To Better Code Organization

Verbs to nouns are very much one to one. After a bit of time, in large complex coding
— procedural programing lends it's self to an “entropy” of structure. How routines
relate and interact with each other becomes less and less obvious. Often, in order to
use one subroutine, one must find data that is not relevant to the caller simply to
provide the needed parameter to the called subroutine. This pollutes the purpose of
the routines and makes them expand in complexity.

Another problem is a “leakage” of one domain of activities into another. This is the
famous problem of “fixing one thing that breaks another.” This often happens in
subroutines that have expanded beyond their original scope. What looks like a good
simple fix becomes a problem because the context of how the subroutine is used might
be different based on the callers using it and their intents.

There is a measurement tool called “software cohesion” that helps identify just how
much scoped has creeped “outside their boxes.” I recommend googling the term and
becoming familiar with the concept. Having a good cohesion factor means easier

Page 142

maintenance, cheaper maintenance, and faster maintenance.

>
Data procedure
Set / procedure \

procedure procedure
include procedure include
procedure procedure
procedure

“Hodge Podge” of procedures and
their data sets.

OOP is more of a “holistic” approach. There is a set of code and a set of data and the
object owns these things. Because OOP involves data encapsulation — a lot of pieces
are “built into” the object.

At times there is data related to activities that cause parameters to procedures to
expand. Soon programming involves finding data and passing more and more data
along to procedures. If this is not done, then the use of shared variables come into use
and those have a whole other set of problems.

Page 143

Object Object

method
method -
method
method
method
method
i method

D D
Data Data
Set Set

Activities and data are stored in a
way they are all associated to each
other and “own” the verbs and nouns
of it's domain of action.

In OOP, one asks an object that fully knows about it's domain of operation (both in
terms of data and action on that data) to do something within it's domain. If you need
to inform it about additional information — the object will have a means to do that
regardless of the outside programming asking it to do something.

Often one will want to make a special condition. Perhaps one has coded for an entity
in an object but another entity like it has just a couple more special features about it.
One can “embrace and extend” the old object into the new object focusing not on the
base features of it but on the differences between the base object and the expanded
object.

Page 144

Object

method Ob J ect
method

method method
method method
method method

D D
Data Data
Set Set

Inheritance continues to keep domains
Segregated but allows expansion.

When the programmer is working on the new extension of the object — they won't
need to risk changes to the original object for it's special purpose. Nor will they even
need to deal with the base objects code and data — their focus is on the differences and
new features of activities and data.

Class Naming Conventions

Often I have found the following convenient:

Collections of like methods that don't really provide a business logic are called
*Tools as In FileTools. FileTools contains items such as GetPath(),
GetPostfix (), €tC.

An object that manages a collection of anything I call a Manager. For example, an
object that handles a collection of users might be called userManager.

An object that manages one specific set of data is named for that data in business

Page 145

parlance such as salesorder. This object would be oriented to manipulating one
specific item and that is a sales order for the customer.

When instancing an object, I tend to put obj in front of it — as in ObjSalesOrder.
This helps separate the static use of classes separate from the dynamic instantiation of
objects defined by classes.

Method Naming Conventions

You will want your methods to describe what they do. For example, if they are meant
to set some value within the object, then it should be prefixed with set* (). And it is
often useful to pull the value back with a Get* (). Sometimes computation needs to
be done on the value for the Get* () just as there may need to be some done for a
Set* (). An exanqﬂe nﬁght be GetAccountNumberAsInteger () or
GetAccountNumberAsCharacter ().

If you want to initialize the object in some manner, | tend to use FindBy* () - as in
FindByAccountNumber (AccountNumber). There may be an inclination of using an
index as part of the name of the FindBy* () - and you may not have a choice on that.

However, the FindBy* () should really be based on the conceptualization of how
things are understood at a human level. For example, the constructor will take care of
the context of the data such as this:

ObjAccountManager = new AccountManager (InstanceID, SessionlID).
We segregate all the data by a value in the record known as an InstanceID to identify
one company's data from another. But, this really has nothing to do with finding an

account in the context of the company — they have no idea that other companies exist
in the database nor are they concerned about a web session identifier.

They just know they should get the account by the account number and so when the
program attaches the user interface to the object it should be straight forward:

ObjAccountManager:FindByAccountNumber (TheNumber) .

So, in the constructor we try to define all the context the object might work under and
let the methods be focused on the exacting set of data that the programmer is really
interested in dealing with at the time of the call.

Page 146

When to inherit and when to instance within an object
This can be a thorny question and sometimes there is no right answer.

If one plans on adding additional data and methods to an object whom you plan on
being able to access it's methods directly, the answer is easily inheritance. You are
simply building up on a base of functionality.

Sometimes it is more fuzzy. For example below, the object makes use of a lot of the
stack's methods — but has some wrappers around it to make it more oriented to the
proper use of the object. This could go both ways — either inheriting or instancing a
stack object within the object and making use of the instance.

In this case, I chose to inherit.
/* Class to track and transform error codes back to web service */
/* users. This is the place to centralize the errors. */

class amduus.misc.errors inherits amduus.misc.stack:

/*‘k‘k‘k**‘k‘k‘k**‘k‘k‘k**‘k‘k‘k**‘k‘k‘k**‘k‘k‘k**‘k‘k‘k**‘k‘k‘k**‘k‘k‘k**‘k‘k‘k***********************/

/* Translate an error code into a message and store it. */
/* Some routines will not be using this per se to store errors, but */
/* need a tool to translate an error code into a message. This method */
/* will do this. */

/**‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***‘k‘k***********************/

method public character TranslateCode (input ErrorCode as character):
define variable ErrorMsg as character no-undo.
case ErrorCode:

:No Error".

:No Such Traveler".

":This Cannot Be Blank".
:Required Information Missing!".

when "000" then ErrorMsg = ErrorCode
when "001" then ErrorMsg = ErrorCode
when "015" then ErrorMsg = ErrorCode
when "V05" then ErrorMsg = ErrorCode

+ 4+ + +

otherwise ErrorMsg = ErrorCode + ":No Description”.
end. /* case */
return ErrorMsg.

end.

/**/

/* Given a code, it will translate it and store in this object's data */

/* store for use with HasError () and GetError(). *x/
/*******************************k*‘k*‘k*k************************************/

Page 147

method public logical SetError (input ErrorCode as character):
PushOnStack (TranslateCode (ErrorCode)).

end.

/**/

/* Send back one error, do not remove from this object's storage area. */
/**/

method public character PeekError():
return PeekOnStack() .

end. /* method */

/**/

/* Sometimes there are warning, info, and fatal stop errors in the */

/* this provides a means to determine if such a thing is in there. */
/**/

method public logical ContainsErrorCodeBeginning
(input ErrorCodeBegins as character):

return can-find (first TheStack where TheStack.Data begins ErrorCodeBegins).

end.

/**/

/* Send back one error, remove from this object's storage area. */
/**/

method public character GetError ():
return PopOffStack() .

end. /* method */

/***‘k*k***‘k*k********‘k*k********‘k*k******************‘k*k**********************/

/* Determines if any error codes reside on the object yet. Good for a */
/* repeat while S:IsError () */

/* loop for error handling. */
/********‘k*********‘k****‘k****‘k**“k“k‘k*k**k“k‘k*k********‘k****‘k*********‘k****‘k***/

method public logical HasError():
return not IsEmpty().
end. /* method */

end. /* class */

Page 148

/**************** UNIT TEST AKhkKkhkhAKAAhhh Ak kA khkArhhA A A rk kA A h kK%

define variable T as class amduus.misc.errors no-undo.

T = new amduus.misc.errors ().
T:SetError ("000").
T:SetError ("003").
T:SetError ("101").
T:SetError ("J12").

display "Peeking" with frame a.

display T:PeekError () format "x(70)".

if T:ContainsErrorCodeBeginning ("002") then
display "yes on 002".
else

display "no on 002".

if T:ContainsErrorCodeBeginning ("003") then
display "yes on 003".
else

display "no on 003".
display "Popping" with frame b.
repeat while T:HasError():

display T:GetError () format "x(70)".
end.

delete object T.

**/

The stack object has value added to it by converting a code number into a code
number and error message as well as methods that are error related.

Now take for example an object that does something completely different than errors
yet one might want to record any errors that occur with it. The object is far removed
in concept from a stack or from an error tool and so it is better to simply make an

instance of an object within the object and use that.

Adding constants for use with an object

A lot of times an object will be configurable — for example — in the socket.cls

Page 149

object, there is a CRLF constant that is a public variable. This is because in many
protocols — HTTP Message, SMTP, POP3, IMAP, etc., a command or line of data ends
with a CRLF.

As an example, this line on a pop3 object would retrieve a particular message:

POPConnection:WriteText (“RTRV ” + MsgNumber + POPConnection:CRLF) .

Another example is the socket.cls object has an TsssL constant on it. This way
when a connection is made, one can say if the connection should be SSL or not:

ObjSocketManager:0OpenConnection (Host,
PortNumber,
not ObjSocketManager:IsSSL) .

Hopefully upon reading the code one will realize this is a non-SSL socket connection.
This helps with the object being all inclusive in the types of uses for it.

Adding enumerations for use with an object

Other times you may want to enumerate the type of data that can be placed into an
argument of an object. One can use constants for that like:

define private variable EnumJobState as character

init “START, STOP, PAUSE, DONE, PROCESSING” no-undo.

define public variable JobState START as character init “START” no-undo.
define public variable JobState STOP as character init “STOP” no-undo.

Note EnumJobState is a private variable and simply used to check if a value coming
in is a proper value. The other variables are named in such a way that they can be
used as enumerations. We use variables because we don't want the developer using
the object researching into what are valid values for their own variables or pre-
processor definitions. Also, it gives an abstraction layer where if we want to change
the values around within the object they can be done so without interrupting the other
code.

Then defining a set* method might be:

Page 150

method public logical SetJobState (input JobState as character):
if not can-do (EnumJobState, JobState) then do:
SetError (“3007).
return false.
end.

end.

And using the method would be something like:

Jobs:SetJobState (Jobs:JobState STOP) .

This gives you some bonuses:

e Developer never needs to guess or understand what the internal representation
of that value might be — so no research into setting variables or GLOBAL-
DEFINE.

e The code is self-documenting.

The object is there to complete what it needs of it's self.

e Abstraction layer in the values used by the object. The programmer knows to
use the variables — not the values which can be changed in a new version of
the object.

Should I make my app purely object oriented?

That is really up to the developer. It is OK to mix and match — especially when
introducing an OO change to an existing code base.

Page 151

Business OBJIECT REPRESENTATIONS

Objects really shine when used in the capacity of a business
or high level abstraction object. While many people new to
object oriented programming focus on user widgets, the best
deep magic for object oriented programming is embedded
knowledge and information about business rules and process
within an object. If a programmer learns how to use the
object — they are empowered in an incredible manner!

Page 152

Why Business Objects?

There are many benefits to programming in objects — some of which are described
below.

No need to have knowledge of the database structure.

When properly formed objects are available to a developer, they can focus on using
the tools the object provides rather than knowing arcane abbreviations and relations
between tables.

Hopefully, when the object is designed well, all this knowledge is not required of the
developer . They merely know to fill in some blanks in the object and the rest is auto-
magically done.

No need to have knowledge about “magic values” and database quirks.

In my travels as a contracting programmer, I have encountered many systems. All of
them have contained the so called “magic values.” These are values that land into a
field and there is no real heads or tails to what they are for.

For example, a field might contain “01” or “AA01” - these are actual values I have
encountered. They don't really say much do they?

Objects often can deal with these values because this knowledge is embedded in the
object instead of in the programmer's mind. (Unless of course it is the programmer
maintaining the object.)

No need to have knowledge about sub-objects.

Often developers can become easily familiar with “top level” objects. That is when
there is work to be done — often developers integrate the top level objects into data
loads, web services, etc.

The objects often make use of lower level objects and the developer does not need to
know about these in order to be productive.

Page 153

Ease of adding additional properties.

One of the biggest problems with procedural programming is when one discovers a
change requires a change in parameters or data going into a procedure.

Since objects can simply have another variable/property associated with them and they
are immediately available (but not required to be handled by) other code.

Ease of adding additional methods.

The same can be said of adding methods. For example, one might find a need to send
information via a different route. A mail object might use a simple mail command, a
smtpmail command, or a SMTP connection. Making any one of these methods gives
the implementing programmer another option of how to send mail.

In a procedural world, one would need to send in all the information for the mail as
well as a flag for which transport method to use. In an object, the method IS the
transport object flag.

Most importantly — focus on the purpose, not the implementation!

Often OOP programming allows the programmer to work with data in a different
manner. One merely calls salesOrder:FindByOrderNumber (100) and all the data
in the tables and such can be made available to the developer. There is no need to
know of tricky relations or the like — one line does it all as far as the developer is
concerned.

That is where the 4GL showed it's power in years previous with statements that can do
a lot with little work. The 3GL languages made up for this with the addition of OOP
to their grammar — allowing them to tie a lot of power into a few invocations of
methods which in the end were “business statements.”

Page 154

SalesOrder

New

Cancel

SetCustomer
GetBackOrder
Complete
SendToDistribution

Elaborating further, objects allow one to create “business statements” instead of
programming statements. For example:

SalesOrder:FindByOrderNumber (100) .
SalesOrder:Cancel ().

Take into consideration — even in the 4GL — how many statements would be required
of the programmer to cancel a sales order. However, the objects are very much like
creating a language of operations and data that the developer can use to work data in
the process of the business.

Business Objects can beget or use other Business Objects

When using business objects, one can actually create other business objects already
prepped with the data needed for working. As an example below — the programmer
can ask the InventoryMngr object — an object for manipulating inventory in the
company — to create a factory order object. The factory order object could present

Page 155

methods (messages) that the InventoryMngr could use to manipulate a factory order
for a specific part/kit.

InventoryMngr FactoryOrder
AllocateToSales New
PlaceFactoryOrder Cancel
PlaceBuyOrder GetCompleteDate
GetBackOrder GetJobCost
GeneratePickList AssignJobRun
SendToDistribution

As developers become familiar with the various objects they can become more
powerful in their work. The above shows how the InventoryMngr could place a
factory order — here it is in coding:

/* Obtain a factory order for needed inventory */

FactoryOrder = InventoryManager:PlaceFactoryOrder (input PartNumber) .

/* Have the factory order find an existing run or create a new */
/* run to create this part. */

FactoryOrder:AssignJobRun () .

A caveat to OOP though, is one must do a lot of thinking ahead. Sometimes a
developer (myself included) tends to allow scope creep to get into an object. Often

Page 156

programming goes along and then one realizes that some amount of functionality
should have been placed into a different object.

Page 157

ApPENDIX: T1rs AND TRICKS

e Keep the revision number of a program within a property of the class. This
way programs will know what version they are working with if need be. This
also benefits in deployment as one can ident the r-code and determine what
versions of what code made it into the binary.

e Use a format for your error messages and codes. A recommended format
might be ddd: s where d is a digit and s is a string. This way 1) there is an
easy to process number via programming, 2) a message that can be read by a
human, 3) the colon acts as a convenient split character for ENTRY ().

e If you can, keep re-using an object for other collections of data, such as having
a FindBy* () methods, do so. Instantiating and destroying objects is
expensive. If you write your object such that they are re-usable do so and you
will be happy.

e Have a pebug property as part of your object. Then you can switch on
debugging via a parameter or the like or have a special flag in a parameter or
file that your object looks at to determine if it should turn debugging mode on
for it's self.

Page 158

APPENDIX — IDENT FOR SOURCE CODE IDENTIFICATION

Often source code revision systems use the Id and SRevision$ keywords to

store information in a source code listing so people reading it (or compiling it) know
what version they are using.

One can embed these keywords by using a variable init'ed to the keyword. When the
revision system provides source the keywords will be substituted in the init of the
character variable and when compiled by the Progress compiler the value will be
transferred to the r-code.

See the preceding class coding examples for a Revision variable and how this works
for the revision control system.

I provide this in java because it is generally available on all systems for free.

Here is the bash script that calls out to the compiled javaident.class program
to look up these keywords in progress r-code files.

#!/bin/bash

java javaident $@

The java code that provides javaident:

// Not all systems have ident and not all systems have C++

// on them anymore but it appears more and more have java

// so make an ident that works with PVCS keywords in bin-

// ary files.

// Should also work on subversion, RCS, CVS keyword Id

// Contact for updates at

// scottauge@gmail.com scott augelyahoo.com sauge@amduus.com

import java.io.*;
class javaident {

public static void main (String Args([]) throws IOException {

//

Page 159

// Determine if we have anything to work with else tell
// caller what we need

//

if (Args.length < 1) {

System.out.println ("Provide files to search in as arguments.");
System.exit (1);

} // no args

//

// Walk the file list processing each file sent in
//

for (int 1 = 0; i < Args.length; i++)
LookForKeywordsInFile (Args[il]);

} // main ()
public static void LookForKeywordsInFile (String FileName) {
int DbyteFromFile = 0;
char charFromFile;
boolean InDelimiter = false;
boolean FoundKeyword = false;
try {
System.out.println (FileName + ":");
FileInputStream str = new FileInputStream (FileName) ;

StringBuffer PotentialKeyword = new StringBuffer();

while (true) {

byteFromFile = str.read();
if (byteFromFile == -1) break;
charFromFile = (char) byteFromFile;

Character Tl = new Character (charFromFile);
// First time we encounter a $ while not in a delimter
if (charFromFile == '$' && !InDelimiter) {

InDelimiter = true;
PotentialKeyword = new StringBuffer();

Page 160

PotentialKeyword.append (charFromFile) ;
continue;

}

// Found a closing $ to an actual keyword

if (InDelimiter && FoundKeyword == true && charFromFile == 'S$') {
FoundKeyword = false;
PotentialKeyword.append (charFromFile) ;
System.out.println (PotentialKeyword) ;
continue;

if (InDelimiter) {

PotentialKeyword.append (charFromFile) ;

String T = new String (PotentialKeyword);

if (!FoundKeyword && InDelimiter && T.equals ("$Id")) FoundKeyword
= true;

if (!FoundKeyword && InDelimiter && T.equals ("SRevision"))
FoundKeyword = true;

if (!FoundKeyword && InDelimiter && T.length() > 9) {

InDelimiter = false;
PotentialKeyword = new StringBuffer():;

}
} // if InDelimiter
} // while (true)
str.close();
} catch (FileNotFoundException c) {

System.out.println ("Couldn't find file " + FileName);
return;

}

catch (IOException c) {
System.out.println ("IOException for file " + FileName);

return;

} // LookForKeywordsInFile ()

} // class javaident

Page 161

APPENDIX: CLASS GENERATOR WiTH COoMMIT

/* Code generator for an object next to a table */

define input parameter CodeFile as character no-undo.
define input parameter TableName as character no-undo.

define variable FindByName as character no-undo.
define variable FindByParameters as character no-undo.
define variable FindByWhere as character no-undo.
function Capitalize returns character (input TheWord as character):

TheWord = lower (TheWord) .

TheWord = upper (substring (TheWord, 1, 1))
+ substring (TheWord, 2).

return TheWord.

end.

function RemoveDash returns character (input TheWord as character):
return replace (TheWord, "-", "").

end.

message "Running".

find file no-lock

where file. file-name = TableName

no-error.

if not available file then return.

TableName = Capitalize(trim(file. file-name)).

CodeFile = CodeFile + Capitalize(TableName) + "Manager.cls".

output to value (CodeFile).

put unformatted skip.

put unformatted "/* Warning: This is generated code. */" skip.

put unformatted skip.

put unformatted "class " Capitalize(TableName) "Manager:" skip.
put unformatted skip (1) .

Page 162

put unformatted " define temp-table TheRecord like " trim(file. file-

name) "." skip.

put unformatted " define buffer Working" trim(file. file-name) " for "
trim(file. file-name) "." skip.

put unformatted " define private variable IsNew as logical no-undo." skip.
put unformatted " define private variable ErrorCode as character no-undo."
skip.

put unformatted skip(2).

put unformatted "
/***/"
skip.

put unformatted " /* Constructor

*/" skip.

put unformatted "
/***/"

skip.

put unformatted skip (1).

put unformatted " constructor public " TableName "Manager ():" skip(1l).
put unformatted " end. /* constructor */" skip(2).

put unformatted skip(2).

put unformatted "
/***/"
skip.

put unformatted " /* Destructor

*/" skip.

put unformatted "
/***/"

skip.

put unformatted skip (1).

put unformatted " destructor public " TableName "Manager ():" skip(1l).
put unformatted " end. /* destructor */" skip(2).

put unformatted skip(2).
put unformatted "

R i I I I I I S I b S I S I b I S I b I R S I b S I S e I S I S I S I I b I I R S b S R b e b S b S S I b Sb b b I b S e i AL
/ /
skip.
put unformatted " /* Commit changes
*/" skip.
put unformatted "
/*k***k‘k*****************************k***k**********************************/"

skip.

put unformatted skip (1).

put unformatted " method public logical Commit ():" skip(1l).

put unformatted " if IsNew then create Working" TableName "." skip(1l).
put unformatted " buffer-copy TheRecord to Working" TableName "."

skip (1) .

put unformatted " ReleaseToOthers () ." skip(1l).

Page 163

put unformatted " end. /* method */" skip(2).

put unformatted skip(2).

put unformatted "
/***/"
skip.

put unformatted " /* Release changes

*/" skip.

put unformatted "
/***/"

skip.

put unformatted skip (1).

put unformatted " method public logical ReleaseToOthers():" skip(1l).
put unformatted " release Working" TableName "." skip(l).

put unformatted " end. /* method */" skip(2).

put unformatted skip(2).

put unformatted "
/********k********************k********************k***********************/"

skip.

put unformatted " /* Rollback changes

*/" skip.

put unformatted " /* A RollBack() after a Commit() is pretty much
useless. Use UNDO. */" skip.

put unformatted "
/*********~k***************************************~k*********************/"

skip.

put unformatted skip (1).

put unformatted " method public logical RollBack():" skip(1l).
put unformatted " empty temp-table TheRecord." skip.

put unformatted " IsNew = false." skip(l).

put unformatted " ReleaseToOthers () ." skip(l).

put unformatted " end. /* method */" skip(2).

for each field of file no-lock:

put unformatted skip(2).

put unformatted "
/*k*k*k*k****k*k‘k***k**k"k*k******k‘k****k*k*k*k***********‘k*****k*k‘k‘k********************/"
skip.

put unformatted " /* Set/Get for " field. field-name " */" skip.

put unformatted "
/***‘k‘k*****‘k********/"

skip.

put unformatted skip (1).

put unformatted " method public void Set"
Capitalize(trim(field. field-name)) " (input TheValue as "

trim(_field._datg—type) "):" skip.
put unformatted skip(1l).

Page 164

put unformatted " SetError (~"000~")." skip(1l).

put unformatted " /* Ensure the record is available from a FindBy
method */" skip (1).

put unformatted " if not available TheRecord then do:" skip(l).

put unformatted " SetError (~"001~")." skip.

put unformatted " return." skip(1l).

put unformatted " end. /* 1f */" skip(1l).

put unformatted " /* All is OK. Set the value. */" skip (1).

put unformatted " TheRecord." Capitalize(trim(field. field-name)) "

= TheValue." skip.

put unformatted skip(1l).

put unformatted " end. /* Set" trim(field. field-name) " */" skip.

put unformatted skip(2).

put unformatted " method public " trim(field. data-type) " Get"
Capitalize(trim(field. field-name)) " ():" skip.

put unformatted skip(l).

put unformatted "
put unformatted "
method */" skip (1).
put unformatted "
put unformatted "
put unformatted "
put unformatted "
put unformatted "
put unformatted "
name)) "." skip.
put unformatted skip(1l).
put unformatted " end. /* Get" trim(field. field-name)

SetError (~"000~")." skip(1l).
/* Ensure the record is available from a FindBy

if not available TheRecord then do:" skip(1l).
SetError (~"001~")." skip.
return ?." skip(l).
end. /* if */" skip(1l).
/* All is OK. Return the value. */" skip (1).
return TheRecord." Capitalize(trim(_field. field-

" */u Skip.
end. /* for each */

put unformatted skip(2).

put unformatted "
/***/"
skip.

put unformatted "
*/" skip.

put unformatted "
/****************************k*k*k**************************************k*k*k*/"

/* Provide a means to query any errors occurred.

skip.

put unformatted skip (1).

put unformatted " method public character GetError ()
put unformatted " return ErrorCode." skip(1l).

put unformatted " end. /* GetError */" skip.

" skip (1) .

put unformatted skip(2).

put unformatted "
/***************‘k*********************k**********************************/"

skip.

Page 165

put unformatted " /* Provide a means to set the error code and message.
*/" skip.

put unformatted "
/***/"

skip.

put unformatted skip (1).

put unformatted " method private character SetError (input ErrorNumber as
character) :" skip(1l).

put unformatted " case ErrorNumber:" skip(1l).

put unformatted " when ~"000~" then ErrorCode = ErrorNumber + ~":No
Error~"." skip.

put unformatted " when ~"001~" then ErrorCode = ErrorNumber + ~":No
Record~"." skip(1l).

put unformatted " end. /* case */" skip (1).

put unformatted " end. /* SetError */" skip.

put unformatted skip(2).

put unformatted "
/********k*k**‘k****‘k**********/"
skip.

put unformatted " /* Provide a means to reset the error code and message.
*/" skip.

put unformatted "
/***/"

skip.

put unformatted skip (1).

put unformatted " method private void ResetError():" skip(l).
put unformatted " SetError (~"000~")." skip(1l).

put unformatted " end. /* ResetError */" skip.

for each Index no-lock

where Index. File-RecID = recid(File)
/* and Index. Unique = true */

FindByName = "".

FindByParameters = " (~n".

FindByWhere = "".

for each Index-Field OF _Index no-lock,
each Field OF Index-Field no-lock:

FindByName = FindByName + RemoveDash (Capitalize(Field. Field-Name)) .

if FindByWhere = "" then
FindByWhere = " where Working" + TableName + "." +
Capitalize(Field. Field-Name)
+ " =" + Capitalize(Field. Field-Name) + "~n".

Page 166

else
FindByWhere = FindByWhere

+ " and Working" + TableName + "." +
Capitalize(Field. Field-Name)
+ " =" + Capitalize(Field. Field-Name) + "~n".
FindByParameters = FindByParameters
+ " input " + Capitalize(Field. Field-Name) + " as

" + trim(Field. Data-type) + ",~n".
end. /* for each Index-Field */

FindByParameters = substring (FindByParameters, 1,
length (FindByParameters) - 2) + "~n) t~n".

put unformatted skip(2).

put unformatted "
/***************************‘k***/"
skip.

put unformatted " /* Provide a FindBy* () to update a record with or to
query values by. */" skip.

put unformatted "
/*******k**k‘k*k**/"
skip.

put unformatted skip (1).

put unformatted " method public logical FindBy" FindByName skip.

put unformatted " " FindByParameters skip.

put unformatted " find Working" TableName " no-lock " skip.

put unformatted FindByWhere

put unformatted " no-error." skip (2).

put unformatted " if available Working" TableName " then do:" skip.

put unformatted " IsNew = false." skip.

put unformatted " create TheRecord." skip.

put unformatted " buffer-copy Working" TableName " to TheRecord."
skip.

put unformatted " end. /* if available */" skip(1l).

put unformatted " return available Working" TableName " ." skip(1l).

put unformatted " end. /* method */" skip(2).

end. /* for each Index */

put unformatted "
/***‘k‘k*****‘k********/"

skip.
put unformatted " /* After using a FindBy* () and want to update - use
this. */" skip.

put unformatted "
/***************‘k*********************k**********************************/"

skip.

Page 167

put unformatted skip (1).

put unformatted " method public logical LockRecord ():" skip(1l).

put unformatted " SetError (~"000~")." skip(1l).

put unformatted " /* Ensure the record is available from a FindBy
method */" skip (1).

put unformatted " if not available Working" TableName " then do:"
skip (1) .

put unformatted " SetError (~"001~")." skip.

put unformatted " return false." skip(l).

put unformatted " end. /* if */" skip(1).

put unformatted " find current Working" TableName " exclusive-lock no-
error." skip(l).

put unformatted " return available Working" TableName "." skip(1l).
put unformatted " end. /* method */" skip.

put unformatted skip(2).

put unformatted "
/***/"
skip.

put unformatted " /* Provide a means to create a new record with.

*/" skip.

put unformatted "
/***/"

skip.

put unformatted skip (1).

put unformatted " method public logical CreateRecord():" skip(l).
put unformatted " create TheRecord." skip(1l).

put unformatted " IsNew = true." skip.

put unformatted " return available TheRecord." skip(1l).

put unformatted " end. /* method */" skip(2).

put unformatted "end. /* class */" skip(2).

put unformatted "/**************************** UNIT TEST CODE
ok khkhhkhkkhkhkrrkkhkhkhkrxhkkhkhrhxkhkkxx Skip(Z).

put unformatted " define variable N as class " TableName "Manager no-undo."
skip.
put unformatted " N = new " TableName "Manager ()." skip(1l).

put unformatted " delete object N." skip(2).
put unformatted
"**/"

skip.

output close.

/****************************** UNIT TEST CODE
Ak Kk Ak Ak hkkhkhkhkhkkhhkhhrkhkhhhrhkhkhkhkrhkkhhkhkrkhhhxkx*x*

Page 168

run e:\code\ClassGeneratorWithCommit.p ("e:\code\", "Discussion").

compile e:\code\DiscussionManager.cls.

LR R S R S S R R S SRR SRR S R R I S R I R S R I I I I S b S S b b e S S b e e

*******/

Page 169

APPENDIX — REVISED DYN_FINDINSCHEMA.P ProGrRAM

This is for use with the Dynamic Toolkit. To fit it in you will probably need to rework
the code around the call a little bit.

/**

PROCEDURE : utils/db/isdbtable.p

CHANGES MADE AND DATE:
Date Version Description

11/08/06 LINX#daynem Initial Version.
03/10/06 daynem Rework to use dynamic query rather than change DB.

**/

DEFINE INPUT PARAMETER icTableName AS CHARACTER NO-UNDO.
DEFINE OUTPUT PARAMETER olIsTable AS LOGICAL NO-UNDO.
DEFINE OUTPUT PARAMETER oiDatabaseNumber AS INTEGER NO-UNDO.
DEFINE VARIABLE lhFileBuffer AS HANDLE NO-UNDO.

DEFINE VARIABLE lhQuery AS HANDLE NO-UNDO.

DEFINE VARIABLE lcQuery AS CHARACTER NO-UNDO.

DEFINE VARIABLE lcDbName AS CHARACTER NO-UNDO.

CREATE WIDGET-POOL "ISDBTABLE".

DB_LOOP:
DO oiDatabaseNumber = 1 TO NUM-DBS:

lcDbName = LDBNAME (oiDatabaseNumber).

lcQuery =
"FOR EACH " + lcDbName + ". file NO-LOCK "o+
" WHERE " + lcDbName + ". file. file-name = " + QUOTER
(icTableName).

CREATE BUFFER lhFileBuffer
FOR TABLE (lcDbName + ". file")
IN WIDGET-POOL "ISDBTABLE".

CREATE QUERY 1lhQuery
IN WIDGET-POOL "ISDBTABLE".

Page 170

1hQuery:ADD-BUFFER (lhFileBuffer).
1hQuery:QUERY-PREPARE (lcQuery).
1hQuery:QUERY-OPEN ().
1hQuery:GET-FIRST ().

IF NOT 1lhQuery:QUERY-OFF-END THEN
DO:
o0lIsTable = TRUE.
LEAVE DB LOOP.
END.
END.

IF NOT olIsTable THEN
oiDatabaseNumber = 2.

DELETE WIDGET-POOL "ISDBTABLE".

Page 171

APPENDIX — SCRATCH TABLE DATA DicTiONARY LISTING

Table: Scratch ==

Table Flags: "f" = frozen, "s" = a SQL table
Table Table Field Index Table
Name Flags Count Count Label
Scratch 14 2 Scratch

Dump Name: scratch
Description: Transitory data collection.
Storage Area: Schema Area

FIELD SUMMARY
Table: Scratch

Flags: <c>ase sensitive, <i>ndex component, <m>andatory, <v>iew component

Order Field Name Data Type Flags
10 CreateDate date i
20 CreateTime deci-2 i
30 CreationProgram char
40 DataName char i
50 StructureName char
90 Datal char
100 DataZ2 char
110 Data3 char
120 K1 char
130 K2 char
140 K3 char
Field Name Format
CreateDate 99/99/99
CreateTime ->>,>>9,99
CreationProgram x(8)
DataName X (8)
StructureName x(8)
Datal x(8)
Data2 x(8)
Data3 x(8)
K1 x (8)
K2 x(8)
K3 x(8)
Field Name Initial
CreateDate ?

CreateTime 0

CreationProgram

DataName

StructureName

Datal

DataZ2

Data3

K1l

K2

K3

Field Name Label Column Label
CreateDate CreateDate CreateDate
CreateTime CreateTime CreateTime
CreationProgram CreationProgram CreationProgram
DataName DataName DataName
StructureName StructureName StructureName
Datal Datal Datal

DataZ2 Data?2 Data2

Data3 Data3 Data3

K1 ? ?

K2 ? ?

K3 ? ?

INDEX SUMMARY

Table: Scratch
Flags: <p>rimary, <u>nique, <w>ord, <a>bbreviated, <i>nactive, + asc,

Flags Index Name Cnt Field Name

keyl 2 + CreateDate
+ CreateTime

1 + DataName

** Index Name: keyl
Storage Area: Schema Area
** Index Name: keyb
Storage Area: Schema Area

FIELD DETAILS

- desc

Table: Scratch

** Field Name: CreateDate
Description: Date alert created.

** Field Name: CreateTime
Description: Time alert created.

** Field Name: CreationProgram
Description: Name of program that threw the alert.

Page 173

** Field Name: DataName
Description: Name of the data set.

** Field Name: StructureName
Description: Identify the type of data stored.

** Field Name: Datal
Description: Data Field.

** Field Name: Data?2
Description: Data Field.

** Field Name: Data3
Description: Data Field.

Page 174

APPENDIX: DiscussioN TABLE Darta DicTtioNARY LiIsTING

10/10/08 12:14:49 PROGRESS Report
Database: forum (PROGRESS)

Table: Discussion

Table Flags: "f" = frozen, "s" = a SQL table
Table Table Field Index Table
Name Flags Count Count Label
Discussion 7 2 Discussion

Dump Name: discussion
Description: Contains the discussion records
Storage Area: Schema Area

==== = = = FIELD SUMMARY = = = ====
=== = Table: Discussion == = ===

Flags: <c>ase sensitive, <i>ndex component, <m>andatory, <v>iew component

Order Field Name Data Type Flags
10 DiscussionID char i
20 RoomID char i
30 FromIMUserID char i
40 ToIMUserID char i
50 MessageText char
60 CreateDate date i
70 CreateTime inte i

Field Name Format

DiscussionID x(70)

RoomID x(70)

FromIMUserID x (70)

ToIMUserID x(70)

MessageText x(80)

CreateDate 99/99/99

CreateTime =>,>>>,>>9

Page 175

Field Name

Initial

DiscussionID
RoomID
FromIMUserID
ToIMUserID
MessageText
CreateDate TODAY
CreateTime 0
Field Name Label Column Label
DiscussionID DiscussionID DiscussionID
RoomID RoomID RoomID
FromIMUserID FromIMUserID FromIMUserID
ToIMUserID ToIMUserID ToIMUserID
MessageText MessageText MessageText
CreateDate CreateDate CreateDate
CreateTime CreateTime CreateTime
INDEX SUMMARY
Table: Discussion
Flags: <p>rimary, <u>nique, <w>ord, <a>bbreviated, <i>nactive, + asc,
desc
Flags Index Name Cnt Field Name
P DiscussionID 1 + DiscussionID
RoomFromToDateTime 5 + RoomID
+ FromIMUserID
+ ToIMUserID
+ CreateDate
+ CreateTime
** Index Name: DiscussionID
Storage Area: Schema Area
** Index Name: RoomFromToDateTime
Storage Area: Schema Area
FIELD DETAILS
Table: Discussion

Page 176

** Field Name:
Description:

** Field Name:
Description:

** Field Name:
Description:

** Field Name:
Description:

** Field Name:
Description:

** Field Name:
Description:

** Field Name:
Description:

DiscussionID
Unique identifier for the record

RoomID
Which room does this discussion take place in

FromIMUserID
Who is the discussion from?

ToIMUserID
Who is this discussion meant to be read by?

MessageText
Text of the message between users.

CreateDate
Date message was created

CreateTime
Time message was created.

Page 177

APPENDIX: SYSPARAMETER TABLE DATA DIicTIONARY LISTING

10/10/08 13:28:13 PROGRESS Report

Database: forum (PROGRESS)

==== = = = Table: SysParameter = = ====
Table Flags: "f" = frozen, "s" = a SQL table

Table Table Field Index Table

Name Flags Count Count Label

SysParameter 3 1 SysParameter

Dump Name:
Description:
Storage Area:

sysparameter
Hold parameters of operation
Schema Area

FIELD SUMMARY = ===

==== = = = Table: SysParameter = = ====
Flags: <c>ase sensitive, <i>ndex component, <m>andatory, <v>iew component
Order Field Name Data Type Flags
10 ParameterName char i
20 Data char
30 Comment char
Field Name Format
ParameterName x (40)
Data x (8)
Comment x (8)
Field Name Initial
ParameterName
Data
Comment

Page 178

Field Name Label Column Label

ParameterName ParameterName ParameterName
Data Data Data
Comment Comment Comment

———————— === INDEX SUMMARY ====== ==========
=== Table: SysParameter ===

Flags: <p>rimary, <u>nique, <w>ord, <a>bbreviated, <i>nactive, + asc, -
desc

Flags Index Name Cnt Field Name

P ParameterName 1 + ParameterName

** Index Name: ParameterName
Storage Area: Schema Area

FIELD DETAILS
Table: SysParameter

** Field Name: ParameterName
Description: Name of the parameter.

** Field Name: Data
Description: Setting for the parameter

** Field Name: Comment
Description: Some description of the parameter's purpose.

Page 179

APPENDIX: OTHER USEFUL ToOLKITS & INFORMATION

PDF Include

PDF Include is a great open source software package written completely in the ABL
language for operation system independence. It is a set of APIs programmers can use
to create and manipulate PDF files.

http://sourceforge.net/projects/pdf-inc

freeframework.org

The Free Framework project provides a set of code you can use in your Webspeed
application for increased functionality. It is worth looking over to see if it has
anything of interest to your work.

http://www.oehive.org/

OE Hive

OE Hive is a collection of papers and open source code for Progress ABL
programmers. There is a lot of good stuff on here.

http://www.oehive.org/

peg.com

PEG (Progress Email Group) is the grand daddy of groups of Progress developers and
users supporting each other regarding all kinds of issues on a mailing list. In addition
to running the mailing list, the site has papers and source code one can make use of in
your work.

http://peg.com/

Progress Talk

Progress talk is the web version of peg.com run by another group.

Page 180

http://progresstalk.com/

Progress PSDN

Progress Software Developers Network is a good source hosted by Progress by a
community of developers for white papers, code, pod casts, and screen casts.

http://www.psdn.com/library/index.jspa

Page 181

ABoutr THE AUTHOR

Scott Augé founded and is president of Amduus Information
Works, Inc. He has worked with Progress technologies since
version 6 - over ten years.

Working primarily with UNIX based systems he has written
enterprise class applications supporting tens of thousands of
users to small systems supporting tens of users. His domain
experience includes manufacturing, e-commerce,
judicial/law enforcement, travel and service management
industries.

He can be reached at scottauge@gmail.com or
sauge(@amduus.com.

Page 182

